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Preface

This book provides guidelines for doing design science in information systems and
software engineering research. In design science, we iterate over two activities:
designing an artifact that improves something for stakeholders and empirically
investigating the performance of an artifact in a context. A key feature of the
approach of this book is that our object of study is an artifact in a context.
The artifacts that we design and study are, for example, methods, techniques,
notations, and algorithms used in software and information systems. The context
for these artifacts is the design, development, maintenance, and use of software and
information systems. Since our artifacts are designed for this context, we should
investigate them in this context.

Five major themes run through the book. First, we treat design as well as
empirical research as problem-solving. The different parts of the book are structured
according to two major problem-solving cycles: the design cycle and the empirical
cycle. In the first, we design artifacts intended to help stakeholders. In the second,
we produce answers to knowledge questions about an artifact in context. This dual
nature of design science is elaborated in Part I.

Second, the results of these problem-solving activities are fallible. Artifacts may
not fully meet the goals of stakeholders, and answers to knowledge questions may
have limited validity. To manage this inherent uncertainty of problem-solving by
finite human beings, the artifact designs and answers produced by these problem-
solving activities must be justified. This leads to great emphasis on the validation
of artifact designs in terms of stakeholder goals, problem structures, and artifact
requirements in Part II. It also leads to great attention to the validity of inferences in
the empirical cycle, treated in Part IV.

Third, before we treat the empirical cycle, we elaborate in Part III on the
structure of design theories and the role of conceptual frameworks in design and
in empirical research. Science does not restrict itself to observing phenomena and
reporting about it. That is journalism. In science, we derive knowledge claims about
unobserved phenomena, and we justify these fallible claims as well as possible,
confronting them with empirical reality and submitting them to the critique of peers.

v
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In this process, we form scientific theories that go beyond what we have observed
so far.

Fourth, we make a clear distinction between case-based research and sample-
based research. In case-based research, we study single cases in sequence, drawing
conclusions between case studies. This is a well-known approach in the social
sciences. In the design sciences, we take the same approach when we test an artifact,
draw conclusions, and apply a new test. The conclusions of case-based research
typically are stated in terms of the architecture and components of the artifact and
explain observed behavior in terms of mechanisms in the artifact and context. From
this, we generalize by analogy to the population of similar artifacts. In sample-
based research, by contrast, we study samples of population elements and make
generalizations about the distribution of variables over the population by means
of statistical inference from a sample. Both kinds of research are done in design
science. In Part V, we discuss three examples of case-based research methods and
one example of a sample-based research method.

Fifth and finally, the appendices of the book contain checklists for the design and
empirical research cycles. The checklist for empirical research is generic because
it applies to all different kinds of research methods discussed here. Some parts
are not applicable to some methods. For example, the checklist for designing an
experimental treatment is not applicable to observational case study research. But
there is a remarkable uniformity across research methods that makes the checklist
for empirical research relevant for all kinds of research discussed here. The method
chapters in Part V are all structured according to the checklist.

Figure 1 gives a road map for the book, in which you can recognize elements
of the approach sketched above. Part I gives a framework for design science
and explains the distinction between design problems and knowledge questions.
Design problems are treated by following the design cycle; knowledge questions are
answered by following the empirical cycle. As pointed out above, these treatments
and answers are fallible, and an important part of the design cycle and empirical
cycle is the assessment of the strength of the arguments for the treatments that we
have designed and for the answers that we have found.

The design cycle is treated in Part II. It consists of an iteration over problem
investigation, treatment design, and treatment validation. Different design problems
may require different levels of effort spent on these three activities.

The empirical cycle is treated in Part IV. It starts with a similar triple of tasks
as the design cycle, in which the research problem is analyzed and the research
setup and inferences are designed and validated. Validation of a research design
is in fact checking whether the research setup that you designed will support
the inferences that you are planning to make. The empirical cycle continues with
research execution, using the research setup, and data analysis, using the inferences
designed earlier.

Examples of the entire empirical cycle are given in Part V, where four different
research methods are presented:

• In observational case studies, individual real-world cases are studied to analyze
the mechanisms that produce phenomena in these cases. Cases may be social



www.manaraa.com

Preface vii

Research problem

Design problem Knowledge ques�on

Theories

Research 
setup design 
& inference 
design

Problem 
analysis

Research methods

Problem 
inves�ga�on

Treatment 
design

Treatment 
valida�on

Valida�on Research 
execu�on

Data 
analysis

Part I

Part III

Part II Part IV

Part V

Checklist for the design cycle
Appendix A

Checklist for the empirical cycle
Appendix B

Design cycle Empirical cycle

Fig. 1 Road map of the book

systems such as software projects, teams, or software organizations or they may
be technical systems such as complex software systems or networks.

• In single-case mechanism experiments, individual cases are experimented with
in order to learn which phenomena can be produced by which mechanisms. The
cases may be social systems or technical systems, or models of these systems.
They are experimented with, and this can be done in the laboratory or in the field.
We often speak of testing a technical prototype or of simulating a sociotechnical
system.

• In technical action research, a newly designed artifact is tested in the field by
using it to help a client. Technical action research is like single-case mechanism
experimentation but with the additional goal of helping a client in the field.

• In statistical difference-making experiments, an artifact is tested by using it
to treat a sample of population elements. The outcome is compared with
the outcome of treating another sample with another artifact. If there is a
statistically discernable difference, the experimenter analyzes the conditions of
the experiment to see if it is plausible that this difference is caused, completely
or partially, by the difference in treatments.

In the opening chapter of Part V, we return to Fig. 1 and fill in the road map
with checklist items. Each research method consists of a particular way of running
through the empirical cycle. The same checklist is used for each of them, but not all
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items in the checklist are relevant for all methods, and particular items are answered
differently for different methods.

The remaining chapters of Part V are about the four research methods and can
be read in any order. They give examples of how to use the checklist for different
research methods. They are intended to be read when you actually want to apply a
research method.

Part III in the middle of the book is about scientific theories, which we will
define as generalizations about phenomena that have survived critical assessment
and empirical tests by competent peers. Theories enhance our capability to describe,
explain, and predict phenomena and to design artifacts that can be used to treat
problems. We need theories both during empirical research and during design.
Conversely, empirical research as well as design may contribute to our theoretical
knowledge.

References to relevant literature are given throughout the book, and most chapters
end with endnotes that discuss important background to the chapter. All chapters
have a bibliography of literature used in the chapter. The index doubles up as a
glossary, as the pages where key terms are defined are printed in boldface.

The book uses numerous examples that have all been taken from master’s theses,
PhD theses, and research papers.

� Examples are set off from the rest of the text as a bulleted list with square bullets and in a small
sans serif typeface.

The first 11 chapters of the book, which cover Parts I–III and the initial chapters
of Part IV, are taught every year to master’s students of computer science, software
engineering, and information systems and an occasional student of management
science. A selection of chapters from the entire book is taught every year to PhD
students of software engineering, information systems, and artificial intelligence.
Fragments have also been taught in various seminars and tutorials given at confer-
ences and companies to academic and industrial researchers. Teaching this material
has always been rewarding, and I am grateful for the patience my audiences have
had in listening to my sometimes half-baked ideas.

Many of the ideas in the book have been developed in discussions with Hans
Heerkens, who knows everything about airplanes as well as about research methods
for management scientists. My ideas also developed in work done with Nelly
Condori-Fernández, Maya Daneva, Sergio España, Silja Eckartz, Daniel Fernández
Méndez, and Smita Ghaisas. The text benefited from comments by Sergio España,
Daniel Fernández Méndez, Barbara Paech, Richard Starmans, and Antonio Vetrò.

Last but not least, my gratitude goes to my wife Mieke, who long ago planted
the seed for this book by explaining the regulative cycle of the applied sciences to
me and who provided a ground for this seed to grow by supporting me when I was
endlessly revising this text in my study. My gratefulness cannot be quantified, and
it is unqualified.

Enschede, The Netherlands R.J. Wieringa
May 15, 2014
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Chapter 1
What Is Design Science?

To do a design science project, you have to understand its major components,
namely, its object of study and its two major activities. The object of study is
an artifact in context (Sect. 1.1), and its two major activities are designing and
investigating this artifact in context (Sect. 1.2). For the design activity, it is important
to know the social context of stakeholders and goals of the project, as this is the
source of the research budget as well as the destination of useful research results. For
the investigative activity, it is important to be familiar with the knowledge context
of the project, as you will use this knowledge and also contribute to it. Jointly, the
two major activities and the two contexts form a framework for design science that
I describe in Sect. 1.3. In Sect. 1.4, I show why in design science the knowledge that
we use and produce is not universal but has middle-range scope.

1.1 The Object of Study of Design Science

Design science is the design and investigation of artifacts in context. The artifacts
we study are designed to interact with a problem context in order to improve some-
thing in that context. Here are two examples, one technical and one organizational.
We will use these examples many times later, and so I introduce acronyms for
them:

� In the direction of arrival (DOA) project [10], algorithms for estimating the DOA of a satellite TV
signal were tested. Each of the tested algorithms is an artifact, and the context for each of them is
an IT infrastructure for watching TV in the backseats of a car.

� In the data location compliance (DLC) project [8], a method was developed that allows cloud
service providers to show compliance to the European data location regulations. The method is
an artifact, and the context consists of cloud service providers who want to offer their services on
the European market.

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__1
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Fig. 1.1 The subject of design science: an artifact interacting with a context

The two examples illustrate that design science problems are improvement prob-
lems. Each of the problems has a context in which some improvement is aimed for,
and to understand the design problem, this context has to be understood.

The examples also illustrate that the concept of an artifact is to be taken broadly,
including algorithms and methods. We will even consider conceptual structures as
artifacts, as tools for the mind, that may be usable and useful for particular purposes.

Figure 1.1 illustrates the wide variety of useful things that can be designed as an
artifact. It shows by implication what can not be an artifact. People, values, desires,
fears, goals, norms, and budgets appear in the context of an artifact but cannot be
designed by a design researcher. They are given to the design researcher, as part of
a problem context, and the researcher must investigate these elements of the context
in order to understand them, but not to change them.

Finally, Fig. 1.1 shows that the artifact itself does not solve any problem. It is the
interaction between the artifact and a problem context that contributes to solving
a problem. An artifact may interact differently with different problem contexts
and hence solve different problems in different contexts. It may even contribute to
stakeholder goals in one context but create obstacles to goal achievement in another
context. The design researcher should therefore study the interaction between
artifacts and contexts rather than artifacts alone or contexts alone.

1.2 Research Problems in Design Science

The two parts of design science, design and investigation, correspond to two kinds
of research problems in design science, namely, design problems and knowledge
questions (Fig. 1.2). Table 1.1 lists a number of example design problems and
knowledge questions.

Design problems call for a change in the real world and require an analysis
of actual or hypothetical stakeholder goals. A solution is a design, and there are
usually many different solutions. There may even be as many solutions as there are
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Fig. 1.2 Design science research iterates over two problem-solving activities

Table 1.1 Some example design science research problems. In the top half of the table, the knowledge
questions are motivated by the design problems. In the lower half, the design problems are motivated
by the knowledge questions

Design problem Knowledge question

Design a DOA estimation system for satellite
TV reception in a car

Is the DOA estimation accurate enough?

Design an assurance method for DLC for cloud
service providers

Is the method usable and useful for cloud
service providers?

Design a DOA prototype
Design a simulation of plane wave arrival at a
moving antenna

Is the DOA estimation accurate enough?

Design a usability and usefulness test with
consultants as subjects

Is the method usable and useful for cloud
service providers?

designers. These are evaluated by their utility with respect to the stakeholder goals,
and there is not one single best solution.

Knowledge questions, by contrast, do not call for a change in the world but ask
for knowledge about the world as it is. The answer is a proposition, and when we
try to answer a knowledge question, we assume that there is one answer only. We
do not know the answer, and we may give the wrong answer; we may give a partial
answer or an answer to a slightly different question than what was asked; we may
have degrees of (un)certainty about the answer, and the answer may be true in most
but not all cases. But answering a knowledge question would be meaningless if there
would be as many answers as researchers. And answers to knowledge questions are
evaluated by truth, which does not depend on stakeholder goals. Rational discourse
implies the assumption of single truth but must be combined with the assumption
of fallibilism: we can never be sure that we have actually found the answer to an
empirical knowledge question.

The distinction between design problems and knowledge questions is often
camouflaged in reports about design science research, because design problems are
often formulated to look like a knowledge questions. We then read:

• “ What is an accurate algorithm for recognizing DOA?”

instead of

• “Design an accurate algorithm for recognizing DOA.”



www.manaraa.com

6 1 What Is Design Science?

Table 1.2 Heuristics to distinguish design problems from knowledge questions

Design problems Knowledge questions

Call for a change of the world Ask for knowledge about the world

Solution is a design Answer is a proposition

Many solutions One answer

Evaluated by utility Evaluated by truth

Utility depends on stakeholder goals Truth does not depend on stakeholder goals

This is confusing, because the way design problems must be treated differs from
the way knowledge questions must be answered, and the results are evaluated
differently. Design problems are treated by following the design cycle, which is the
subject of Part II of this book. Knowledge questions may be analytical or empirical,
and in this book we consider empirical knowledge questions. These can be answered
by following the empirical cycle, which is the subject of Parts IV and V of this
book. Table 1.2 summarizes the distinction in terms of heuristics that you can use to
classify your problem.

Problems can create new problems, and a design science project is never
restricted to one kind of problem only. This generates an iteration over design
problems and knowledge questions in design science [2,11]. One possible sequence
is that starting from a design problem, we can ask knowledge questions about the
artifact, about its problem context, and about the interaction between the two. For
example, we can ask about the performance of the artifact and the effects it has on
entities in the problem context. The knowledge-question-answering activity returns
knowledge to the design problem-solving activity.

Conversely, the activity of answering a knowledge question can lead to new
design problems, for example, to build a prototype of the artifact, to simulate its
context, or to design a measurement instrument. The artifacts that result from these
design activities are returned to the question-answering activity and can be used to
answer knowledge questions.

1.3 A Framework for Design Science

The problem context of an artifact can be extended with the stakeholders of the
artifact and with the knowledge used to design the artifact. This extended context
is the context of the design science project as a whole. The resulting picture is a
framework for design science, shown in Fig. 1.3. This is similar to the framework of
Hevner et al. [3], but it contains some important differences, such as the separation
of design and investigation [12].

The social context contains the stakeholders who may affect the project or
may be affected by it. Stakeholders include possible users, operators, maintainers,
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Fig. 1.3 A framework for design science

instructors, etc., of the artifact to be designed. They also include the sponsors of
the design project. Sponsors provide the budget for the project and set goals to
be achieved by the project. Sponsors may be government, in which case they will
probably require the research project to have a goal that is relevant and useful for
society, or they may be private enterprises, in which case they will probably require
the project to deliver a design that is useful for the company.

The knowledge context consists of existing theories from science and engi-
neering, specifications of currently known designs, useful facts about currently
available products, lessons learned from the experience of researchers in earlier
design science projects, and plain common sense [9, pp. 208–224]. The design
science project uses this knowledge and may add to it by producing new designs
or answering knowledge questions. Here is the context of our two examples:

� The stakeholders in the social context of the DOA project [10] are the chip manufacturer NXP
(sponsor), car component suppliers, car manufacturers, garages, car drivers, and passengers.
The knowledge context is very diverse. The project uses a mathematical theory (matrix calculus)
and a natural science theory (signal processing). Three existing algorithm designs are tested,
and these are taken from the knowledge context too. The project also uses some basic theory
of properties of algorithms. The knowledge context in addition contains useful facts, such as the
maximum rotation speed of a car, and lessons learned from experience, such as how to use Matlab
and how to program the experimental Montium processor used in this project.
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� The stakeholders in the social context of the DLC project [8] are KPMG (sponsor), KPMG
consultants (end users of the method), cloud service providers, and European companies who
are or want to become clients of cloud service providers.
In the knowledge context, we find theories about people and organizations: theories of auditing,
cloud business models, knowledge about different designs of cloud computing architectures,
and design theories about security properties of those architectures. Useful facts include facts
about current cloud service providers in the market and their architectures and business models.
Lessons learned from experience used in the project are how to do interviews, how to understand
regulations, and consultancy.

Knowledge available prior to the project is called prior knowledge; knowledge
produced as a result of the project is called posterior knowledge. As shown in
Fig. 1.3, there are many sources for prior knowledge:

• Scientific literature: Scientific theories from the basic sciences and the engineer-
ing sciences, implementation evaluation studies, and problem investigations

• Technical literature: Specifications of artifacts used in a problem context, other
than the artifact you are currently studying

• Professional literature: Experiences of others described in professional mag-
azines, information about artifacts currently on the market, documentation
provided by their vendors, etc.

• Oral communication: Lessons learned by others and heard in conferences, in the
lab, or from their colleagues

If you need an answer supported by rigorous scientific evidence and current
scientific literature does not provide an answer, then you have to do your own
research. This usually scales up the budget of time and money needed to answer
your knowledge questions by an order of magnitude. Research is expensive. The
decision to do research to answer a knowledge is therefore in practice always made
together with the sponsor, who must provide the money and pay the time to do the
research.

1.4 Sciences of the Middle Range

We can further structure the knowledge context of design science research by
identifying different knowledge disciplines (Fig. 1.4). Basic science is the study of
the fundamental forces and mechanisms of nature and includes physics, chemistry,
and some parts of biology that can claim validity in the entire universe. Basic
sciences aim at universal generalizations, which are generalizations that start with
“for all x, : : :.” They achieve this goal at the cost of idealizations, which are
abstractions that are known to be false in the real world, such as point masses,
frictionless surfaces, etc. [1, 4, 5, 7]. Idealizations serve to make the research
problems conceptually manageable. One of the purposes of laboratory research is to
approximate these idealized conditions as much as possible.
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Fig. 1.4 The place of design sciences among other sciences

At the other extreme is case research, which is the knowledge acquisition about
single cases that takes place in engineering, consultancy, psychotherapy, health care,
and other professions. These professions must solve problems in the real world and
cannot idealize away any of the factors or components that play a role in the problem
they are trying to solve. Unmanageable conditions in the real world will not go away
merely by the fact that a professional ignores them or builds an idealized model
in the laboratory. We call these unignorable real-world factors and components
conditions of practice [6, pp. 692–693].

The professions do not aim to generalize beyond the cases that they work with.
Their primary aim is to help the cases they work with. But a side effect of solving
particular cases is that the professional builds up generalizable knowledge. Even in
the real world, there are plenty of justifiable generalizations to be made, but they do
not have universal scope.

The production of these limited generalizations is the focus of the sciences of the
middle range that sit between the extremes of basic sciences and case research.
Special sciences such as parts of biology, psychology, and sociology are quite
happy to generalize about interesting sets of objects of study but do not aim to
generalize about the universe. They study phenomena under realistic conditions,
and many of their generalizations are existential, which means that they start with
“for some/many/most x, : : :.”

In the middle range, we also find applied sciences such as astronomy, geology,
and management science, which apply results from other sciences but also have
developed considerable knowledge of their own. And we find the design sciences
such as software engineering and information systems research. We call these
sciences middle range because they do not aim at universal but at existential
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generalizations, and they do not make unrealistic idealizations in order to acquire
knowledge, but aim to make only realistic assumptions about their object of study.
We call these existential, realistic generalizations middle-range generalizations.

The lower-left part of the diagram is empty. It would contain sciences that aim
to make idealized descriptions of individual cases. There are no such sciences,
for they would produce no generalizable knowledge and, due to the high level of
idealization, would not even produce knowledge of an individual case. However,
in design science we may start with simple simulations of new technology under
idealized conditions of the laboratory to see if something is possible at all. This is
the start of a process called scaling up new technology.

The upper right of the diagram is empty too. It would contain sciences that pro-
duce universal generalizations about cases without making any idealizing abstrac-
tions. These sciences would say that despite the huge variety in conditions of
practice in different problem contexts, some artifact will always produce the
intended effect. Usually, this is an attempt to sell snake oil. The world is too
complex, and our minds are too small, for us to produce such generalizations with
certainty.

However, the design sciences do aim to push the limit of realism and generaliz-
ability. They are aiming to produce knowledge about the real world that does not
make any unrealistic abstractions and that has a scope of validity that is as large as
possible. We will never be able to reach the upper right corner, but when scaling
up new technology from the idealized conditions of cases studied in the laboratory
(lower left) to populations that live in the real world to conditions of practice (upper
right), we aim to get as far as possible.

1.5 Summary

• Design science is the design and investigation of artifacts in context.
• Design science iterates over solving design problems and answering knowledge

questions.
• The social context of a design science project consists of stakeholders who may

affect or may be affected by the project.
• The knowledge context consists of knowledge from natural science, design

science, design specifications, useful facts, practical knowledge, and common
sense.

• Generalizations produced by design science research are middle range. They
may abstract from some conditions of practice but do not make unrealizable
idealizations. They generalize beyond the case level but are not universal.
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Chapter 2
Research Goals and Research Questions

To frame a research project, you have to specify its research goal (Sect. 2.1). Because
a design science project iterates over designing and investigating, its research goal
can be refined into design goals and knowledge goals. We give a template for design
problems in Sect. 2.2 and a classification of different kinds of knowledge goals in
Sect. 2.3.

2.1 Research Goals

To understand the goals of a design science research project, it is useful to
distinguish the goals of the researcher from the goals of an external stakeholder. The
researcher’s goals invariably include curiosity and fun: curiosity what the answer to
knowledge questions is and fun in the design and test of new or improved artifacts.
In this sense, all design science research is curiosity-driven and fun-driven research.

The researcher may have additional goals, such as the desire to improve society
or to promote the well-being of people. This kind of goal is similar to the goals
that external stakeholders may have. One of the external stakeholders will be the
sponsor of the project, which is the person or organization paying for the research.
The sponsor allocates a budget to the research project in order to achieve some goals
and expects to receive useful designs that serve these goals and useful knowledge
about those designs. For most sponsors, design science research projects are utility
driven and budget constrained. Some sponsors however may be willing to sponsor
some researchers to do exploratory research. The sponsor may still hope that useful
results will emerge, but whether this will happen is very uncertain.

Putting all of these motivations together gives us a wide variety of kinds of
projects, ranging from market-oriented projects in which an enhancement to a
particular product must be designed to exploratory projects where even the sponsor

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__2
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Fig. 2.1 Goal structure of a design science research project. The goals on the left concern improve-
ment of the real world, and those on the right concern our beliefs about the world. In an exploratory
project, there may be no higher-level improvement goals

has only a vague idea of the possible utility of the designs or knowledge that will
come out of the project. These goals require different capabilities of the researcher
and have a different risk profile for the sponsor.

In all these cases, design science research projects have a goal hierarchy with the
characteristic contribution structure shown in Fig. 2.1. The goals on the right hand
concern our beliefs about past, present, and future phenomena. The goals on the left
are design goals or more generally improvement goals. We now discuss the goal
structure in more detail, starting at the right-hand side.

Design science researchers often have a prediction goal. For example, we may
want to predict how an artifact will interact with a problem context or how a problem
would evolve if it were not treated. A prediction is a belief about what will happen
in the future, which will turn out to be true or false. To make these predictions, we
need knowledge.

Possible knowledge goals of a design science research project are to describe
phenomena and to explain them. For example, a knowledge goal may be to describe
what happens when an artifact interacts with a context and to explain this in terms
of internal mechanisms of the artifact and context.

In order to answer the knowledge questions, some design science research
projects may have to design instruments. For example, the researcher may have to
build a simulation of an artifact in context or to construct a questionnaire to collect
user opinions. These instrument design goals are the lowest-level design goals in
Fig. 2.1.

Moving up in the diagram, design science research projects usually have a higher-
level design goal such as to improve the performance of some artifact in a context.
We call this an artifact design goal or, alternatively, a technical research goal.
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The goal of artifact design is in turn to solve, mitigate, or otherwise improve
some problem in the social context of the project, such as the goal to make
viewing satellite TV in a car possible or to audit data location compliance in cloud
computing.

No goal exists in a normative vacuum, and the problem improvement goal in
turn often supports some higher-level stakeholder goals. There may be a range of
different external stakeholder goals all served by the project improvement goal. For
example, the parent’s goal may be to keep children in the backseat of a car quiet, the
children’s goal is to watch TV in a car, and the car manufacturer’s goal is to increase
sales.

Market-driven projects have a very clear goal hierarchy. Exploratory projects
may have a more fuzzy goal hierarchy where the higher-level goals are speculative
or may even be absent:

� The DOA project is market driven. Starting from the bottom up in Fig. 2.1, the lowest level goal
was to build simulations and prototypes of DOA algorithms and of an antenna array. This is an
instrument design goal. These instruments were used to answer knowledge questions about the
performance of different DOA algorithms—a knowledge goal. This knowledge was generalizable
and could be used to predict the performance of all implementations of the algorithm—another
knowledge goal. Answering these questions also contributed to the artifact design goal of designing
a DOA estimation component. This in turn contributes the goal of problem context improvement.
The DOA estimation component will be part of a directional antenna for satellite TV signal
reception, which is to be used in a car to allow passengers on the backseat to watch TV. The
sponsor’s goal is to develop and sell components of the IT infrastructure needed for this.

� As an example of an exploratory project with only knowledge goals, a project that we will call ARE
(for Agile Requirements Engineering) studied how requirements were prioritized in agile software
engineering projects [1]. This is a knowledge goal that was achieved by answering knowledge
questions about a sample of projects. Achieving this goal enabled another knowledge goal, namely,
to predict how requirements were prioritized in similar projects. There was no artifact design
goal, although the results would be potentially useful to improve requirements engineering in agile
projects.

2.2 Design Problems

Goals define problems. How do we get from here to the goal? A design problem is
a problem to (re)design an artifact so that it better contributes to the achievement
of some goal. Fixing the goal for which we work puts us at some level in the
goal hierarchy discussed in the previous section. An instrument design goal is the
problem to design an instrument that will help us answer a knowledge question,
and an artifact design goal is the problem to design an artifact that will improve a
problem context.

Design problems assume a context and stakeholder goals and call for an artifact
such that the interactions of (artifact � context) help stakeholders to achieve their
goals. We specify requirements for the artifact that are motivated by the stakeholder
goals. This gives us the schema for expressing design problems shown in Table 2.1.
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Table 2.1 Template for design problems (aka technical research questions). Not all parts to be filled
in may be clear at the start of the project

• Improve <a problem context>
• by <(re)designing an artifact>
• that satisfies <some requirements>

• in order to <help stakeholders achieve some goals>.

We discuss the role of stakeholder goals, requirements, and the problem context in
more detail later on. Here, I give some illustrations only:

� The DOA design problem has this format:

– Improve satellite TV reception in cars
– by designing a DOA estimation algorithm
– that satisfies accuracy and speed requirements
– so that passengers can watch TV in the car.

At the start of the project, the requirements on the algorithms were not known yet.
� In a project that we will call MARP (multi-agent route planning), Ter Mors [2] designed and

investigated multi-agent route planning algorithms for aircraft taxiing on airports. The design
problem was to:

– Improve taxi route planning of aircraft on airports
– by designing multi-agent route planning algorithms
– that reduces taxiing delays
– in order to increase passenger comfort and further reduce airplane turnaround time.

This was an exploratory project where the interest of the researcher was to explore the possibility
of multi-agent route planning. The aircraft taxiing was a hypothetical application scenario used to
motivate the research and used as an example in simulations.

Not all elements of the design problem template may be known at the start of the
project, and some may be invented as part of a hypothetical application scenario.
Stating your design problem according to the template is useful because it helps
you to identify missing pieces of information that are needed to bound your research
problem. Table 2.2 lists some heuristics by which the elements of a design problem
can be found.

We can now see what is the problem with masquerading a design problem as a
knowledge question. Take the following knowledge question:

• “What is an accurate algorithm for recognizing direction of arrival?”

This is really a design problem. Using the template, we see what is missing:

• Improve <a problem context>
• by designing a DOA estimation algorithm
• that satisfies accuracy requirement
• so that <stakeholder goals>.
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Table 2.2 Guidelines for filling in missing parts of the design problem statement template

• What must be designed by the researcher? �! The artifact

• What is given to the researcher?
• With what will the artifact interact?

�! The problem context

• What is the interaction?
• What desired properties must it have?

�! The requirements

• To whom should this interaction be useful?
• To achieve which of their goals?

�! The stakeholder goals

The problem context and stakeholder goals are missing, so that we have no clue
about the required accuracy and miss one important requirement, namely, execution
speed. We also miss the information needed to set up a test environment.

Many researchers do not want to be perceived as solving “mere” design problems
and insist on stating their research problem as a question, with a question mark.
The following template does that:

• How to <(re)design an artifact>
• that satisfies <requirements>
• so that <stakeholder goals can be achieved>

• in <problem context>?

It contains exactly the same information as our design problem template. Instead
of calling it a design problem, we may now call it a “technical research question.”
However, I have reserved the word “question” for knowledge questions. If you want
to give design problems a more dignified status, I propose to use the term technical
research problem.

2.3 Knowledge Questions

The knowledge goals of a project should be refined into knowledge questions. A
knowledge question asks for knowledge about the world, without calling for an
improvement of the world. All knowledge questions in this book are empirical
knowledge questions, which require data about the world to answer them. This
stands in contrast to analytical knowledge questions, which can be answered by
conceptual analysis, such as mathematics or logic, without collecting data about
the world. Analytical knowledge questions are questions about the conceptual
frameworks that we can use to structure our descriptions of the world. To answer
an analytical knowledge question, we analyze concepts. But to answer an empirical
knowledge question, we need to collect and analyze data. There are several ways to
classify empirical knowledge questions, discussed next.
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2.3.1 Descriptive and Explanatory Questions

One important classification of knowledge questions is by their knowledge goal:
description or explanation. Descriptive questions ask for what happened without
asking for explanations. They are journalistic questions, asking what events were
observed, when and where they happened, who was involved, which devices were
affected, etc. Imagine yourself a journalist at the scene of the happening. Your goal
is not to judge nor to explain, but to just observe without prejudice.

Explanatory questions ask why something happened. We will distinguish three
sorts of why questions:

• “What event caused this event?” Here we ask which earlier event made a
difference to a current event:

� For example, if a program crashes, we may ask which input caused this crash. This means that
we ask which input made a difference to the behavior of the program. It also means that we
assume that with another input, the program might not have crashed.

• “What mechanism produced the event?” A mechanism is an interaction between
system components, and here we ask what system components interacted to
produce the event:

� For example, if we have identified the input that caused a program to crash, we can trace this
input through the program to find the component (procedure, function, statement, etc.) that
failed to respond properly to its input. We may be able to eliminate the failure mechanism by
repairing the defective component or by replacing it with another one.

• “What are the reasons these people or organizations did that?” Biological and
legal persons have goals and desires that motivate their actions, and we can
explain their behavior by indicating these motivations.
Reasons contain an element of choice, and we hold people and organizations
responsible for actions that they performed for a reason. This is not the case for
causes:

� For example, someone may push you in a swimming pool. That push is the cause of your being
in the pool, but it is not your reason for being in the pool. You had no choice. You had no reason
to jump in, and you are not responsible for being in the pool.

� If consultants refuse to use a method because it requires them to change their way of working,
then we hold them responsible for this, because they could have chosen otherwise.

� A consultant may use a method incorrectly because he or she does not understand the method.
Misunderstanding is the cause of incorrect use, not the reason. Given the misunderstanding,
the consultant had no choice, desire, or goal to use the method incorrectly.

2.3.2 An Aside: Prediction Problems

Descriptive and explanatory questions ask what has happened and how this came to
be. But what about the future? Can we have a knowledge question that asks what
will happen in the future? We are asking questions like this all the time. For example,
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Fig. 2.2 A classification of
research goals
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what will be the average satisfaction of users of this system? How accurate will this
algorithm be when used in a car?

However, these are not knowledge questions but prediction problems. A
prediction is a belief about what will happen, and this belief does not constitute
knowledge. We cannot know the future. There is no time travel: we cannot peek at a
future event and then return to the present to answer our question. Instead, we must
wait and see what happens.

But we can try to predict the future by using our knowledge of what has happened
so far and generalizing from this:

� If system X is going to be implemented in organization A next month, we may ask what percentage
of the users will be satisfied. This is a prediction problem. We have no knowledge about this
percentage yet.
However, we can ask another question, namely, what percentage of users of X are satisfied with
the system in organizations where X has been implemented. This is a descriptive knowledge
question.
After empirical research, we find that in a sample of 30 organizations where implementation of X

has been attempted, on the average, 80 % of the users are satisfied and give or take 5 %. This
describes a fact.
Next, we can generalize: In organizations where implementation of X is attempted, on the average,
80 % of the users are satisfied and give or take 5 %. If sampling has been done in a statistically
sound way, then this generalization has statistical support in the above fact. If we can explain it in
terms of properties of X and of the users, then it has additional support. In the absence of these
kinds of support, it is an informed guess based on the fact reported above.
Whatever the degree of support is, we can use the generalization to make a prediction: In the next
organization where X will be implemented, on the average, 80 % of the users will be satisfied and
give or take 5 %. The degree of support for this prediction depends on the degree of support for the
generalization, and on the similarity of the next organization to the past organizations. In any case,
we do not know whether the prediction is correct. In the future, we will know whether it is true.

Knowledge is created by answering knowledge questions, and scientific theories
are created by generalizing from this. These generalizations can be used to solve
prediction problems. We discuss ways to generalize from empirical research in
Parts IV and V.

This gives us the classification of research goals shown in Fig. 2.2. Knowledge
questions ask about the past and present, prediction problems ask about the future,
and design problems ask for a change of the future. This book is about answering
empirical knowledge questions and treating design problems. There are additional
classifications of knowledge questions, treated next.
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Table 2.3 Examples of empirical knowledge questions

Descriptive questions Explanatory questions

Open
ques-
tions

� What is the execution time in this kind of
context?

� What input causes the dip in the graph
of recall against database size?

� Is there a mechanism in the algorithm
that is responsible for this?

� What do the consultants think of the
usability of this method for advising their
clients?

� Why do these consultants have these
opinions about usability? What reasons
do they have?

� How is this related to context of use?
Can we find a social or psychological
mechanism for this?

Closed
ques-
tions

� Is the execution time of one iteration
less than 7.7 ms?

� Why is the execution time of the method
in these test data more than 7.7 ms?

� Is this loop responsible for the high
execution time?

� Do the consultants think method A is
more usable than method B in this con-
text?

� Do consultants prefer method A over
method B because method A resembles
their current way of working more than
method B does?

2.3.3 Open and Closed Questions

A second way to classify knowledge questions is by the range of possible answers
that is prespecified. An open question contains no specification of its possible
answers. It is exploratory. A closed question contains hypotheses about its possible
answers.

This gives us in total four kinds of empirical knowledge questions. Table 2.3
lists some examples. Note that in research that uses statistical inference, closed
descriptive questions are often stated as positive hypotheses, to be confirmed or
falsified by empirical observations:

� Instead of the closed descriptive question “Do consultants prefer method A over method B?,” we
may state the following hypothesis about a population of consultants:

– Consultants prefer method A over method B.

This hypothesis is then tested on a sample of consultants. The data may provide support for or
against this hypothesis.
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Table 2.4 Four important kinds of knowledge questions about designs, with variations

Effect questions: (artifact � context) produce effects?

• What effects are produced by the interaction between the artifact and context?
• How does the artifact respond to stimuli?
• What performance does it have in this context? (Different variables)

Trade-off questions: (alternative artifact � context) produce effects?

• What effects do similar artifacts have in this context?
• How does the artifact perform in this context compared to similar artifacts?
• How do different versions of the same artifact perform in this context?

Sensitivity questions: (artifact � alternative context) produce effects?

• What effects are produced by the artifact in different contexts?
• What happens if the context becomes bigger/smaller?
• What assumptions does the design of the artifact make about its context?

Requirements satisfaction questions: Do effects satisfy requirements?

• Does the stimulus-response behavior satisfy functional requirements?
• Does the performance satisfy nonfunctional requirements?

2.3.4 Effect, Trade-Off, and Sensitivity Questions

The above two classifications of empirical knowledge questions are not restricted
to design science research and are usable in any kind of empirical research. But the
following classification is specific to design science research, because it classifies
empirical knowledge questions according to subject matter. What is the question
about?

The subject of design science is an artifact in context, and hence design science
research questions can be about artifacts, their properties, their context, stakeholders
and their goals, etc. Among all these possible questions, we single out four that
are asked in virtually every design science research project. They are listed, with
variations, in Table 2.4.

Effect questions ask what effect an artifact in a context has. The generic effect
question is:

• What effects are produced by the interaction between artifact and context?

Trade-off questions ask what is the difference between effects of different artifacts
in the same context, and sensitivity questions ask what is the difference between
effects of the same artifact in different contexts. Requirements satisfaction
questions, finally, ask whether the effects satisfy requirements. Requirements
satisfaction is a matter of degree, and different requirements may be satisfied to
a different degree or may even be violated to some degree where others are satisfied
to some degree:
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� The DOA project has the following knowledge questions:

Q1 (Effect) What is the execution time of the DOA algorithm?
Q2 (Requirements satisfaction) Is the accuracy better than 1ı?
Q3 (Trade-off) How do the MUSIC and ESPRIT algorithms compare on the above two

questions?
Q4 (Sensitivity) How do the answers to the above questions vary with car speed? With noise

level?

� Here are three knowledge questions from the DLC project:

Q1 (Effect) What is the usability (effort to learn, effort to use) of the data compliance checking
method? Why?

Q2 (Trade-off) Which parts of the proposed method can be omitted with the remaining part still
being useful?

Q3 (Sensitivity) What assumptions does the method make about consultants, e.g., experience,
required knowledge, and competence?

2.4 Summary

• Different stakeholders in a design science research project may have different
kinds of goals. Researchers are usually at least driven by curiosity and fun
and may be driven by utility too. Sponsors are usually driven by utility and
constrained by budgets but may occasionally allow researchers to do exploratory
research.

• Each design science research project has a goal tree containing design goals and
knowledge goals. There is always a knowledge goal, and usually there are design
goals too.

• A knowledge goal can be related to other research goals and questions in several
ways:

– A knowledge goal can be refined into knowledge questions. These express the
same goal but in a more detailed way. Knowledge questions are descriptive
or explanatory, they can be open or closed, and they may be effect, trade-off,
sensitivity, and requirements satisfaction questions.

– A knowledge goal may contribute to the ability to solve prediction problems.
– A knowledge goal may be decomposed into lower-level instrument design

goals. These are lower-level design goals that help you to achieve your
knowledge goal.

– A knowledge goal may contribute to an artifact design goals (aka technical
research goals), which in turn may contribute to some improvement goal
in the context, which in turn may contribute to some stakeholder goals. In
exploratory research, some of these goals may be absent.

• A prediction problem is a problem to predict what phenomena will occur in the
future. It is answered by applying a theoretical generalization. For example, we
may use a design theory to predict what would happen if a treatment would
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be implemented or to predict what would happen if a problem would remain
untreated.

• A design problem is a problem to (re)design an artifact so that it better contributes
to the achievement of some goal. The template for design problems relates the
artifact and its requirements to the stakeholders and their goals. Some of this
information may be missing at the start of a project or may be speculative.
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Chapter 3
The Design Cycle

A design science project iterates over the activities of designing and investigating.
The design task itself is decomposed into three tasks, namely, problem investigation,
treatment design, and treatment validation. We call this set of three tasks the design
cycle, because researchers iterate over these tasks many times in a design science
research project.

The design cycle is part of a larger cycle, in which the result of the design cycle—
a validated treatment—is transferred to the real world, used, and evaluated. We call
this larger cycle the engineering cycle. In Sect. 3.1, we start with the engineering
cycle and present the design cycle as a subset of the engineering cycle. In Sect. 3.2,
the design and engineering cycles are contrasted with the process of managing
research and development.

3.1 The Design and Engineering Cycles

The engineering cycle is a rational problem-solving process with the structure
shown in Fig. 3.1.1 It consists of the following tasks:

• Problem investigation: What phenomena must be improved? Why?
• Treatment design: Design one or more artifacts that could treat the problem.
• Treatment validation: Would these designs treat the problem?
• Treatment implementation: Treat the problem with one of the designed artifacts.
• Implementation evaluation: How successful has the treatment been? This may be

the start of a new iteration through the engineering cycle.

In implementation evaluation, we ask the same questions as in problem investigation
but with a different goal. The goal of implementation evaluation is to evaluate a
treatment after it has been applied in the original problem context. The goal of

© Springer-Verlag Berlin Heidelberg 2014
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Fig. 3.1 The engineering cycle. The question marks indicate knowledge questions, and the exclama-
tion marks indicate design problems

problem investigation, by contrast, is to prepare for the design of a treatment by
learning more about the problem to be treated.

Figure 3.1 shows the engineering cycle. The question marks indicate knowledge
questions, and the exclamation marks indicate design problems. The terminology of
the engineering cycle is overloaded, and I define the key terms below. First, I give
two examples:

� The MARP project [11] was curiosity driven, and there was no problem investigation. Treatment
design consisted of the design of several versions of a multi-agent route planning algorithm. The
algorithms were validated analytically, by proving deadlock freedom under certain conditions and,
empirically, by testing them on a simulation of an extremely busy day on Schiphol airport.

� The DLC project was utility driven. In the problem investigation, the researcher investigated the
structure of the cloud provision market and current cloud provisioning technology used, European
data location regulations, and the goals of auditors, European companies, and cloud service
providers. As part of treatment design, the researcher made a survey of proposals for advanced
methods to be used for auditing information technology. Based on this and on the results of the
problem investigation, the student designed a new auditing method for data location compliance.
The proposed method was validated by interviewing some IT consultants to ask their opinion about
usability and utility of the method.

3.1.1 Treatment

It is customary for engineers to say that they are designing solutions, but we avoid
this term because it may blind us for the possibility that an artifact may solve
a problem only partially or maybe not at all. Artifacts may even introduce new
problems. In the social sciences, the term intervention is used, in risk management
the term mitigation is used, and in health-care treatment is used. The last term
has the advantage that it naturally suggests an artifact (medicine) interacting with
a problem context (the human body) to treat a real-world problem (contribute to
healing), and so we will use the term “treatment.” The treatment is the interaction
between the artifact and the problem context, as indicated in Fig. 1.1 at the beginning
of Chap. 1. The design science researcher designs not just an artifact, but designs a
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desired interaction between the artifact and the problem context, intended to treat
the problem:

� For example, the DOA algorithm interacts with its context to provide an accurate and speedy
estimation of direction of arrival. This treats, and actually solves, with the desired level of accuracy
and speed, the problem of knowing what this direction is.

� The MARP algorithms interact with their context by updating route plans dynamically based on the
current state of the context of each agent. This treats the problem of delays, by reducing these
delays a bit.

� The compliance checking method is used by consultants in the context of cloud service provision-
ing. It treats the problem how to audit data location compliance.

3.1.2 Artifacts

An artifact is something created by people for some practical purpose. Examples
of artifacts designed and studied in information systems and software engineering
research are algorithms, methods, notations, techniques, and even conceptual frame-
works. They are used when designing, developing, implementing, maintaining, and
using information systems and software systems. When an artifact is used, it is used
by people, which means that it interacts with a context that, along with other things,
contains people.

3.1.3 Design and Specification

Treatments, and hence artifacts, are designed, and these designs are documented in
a specification. There is considerable diversity in the use of these terms in software
engineering and other branches of engineering. For example, in industrial product
engineering, a product specification describes the decomposition of the product into
its parts. In software engineering, a specification describes the external behavior of
the software.

In this book, we stay close to the dictionary definition of these words. A design is
a decision about what to do, and a specification is a documentation of that decision.
For example, we can design the decomposition of a product into parts, but we
can also design its external behavior. We will see later that we even design the
requirements for a project. In all these cases, the designer makes decisions about
what to do. And all these decisions can be documented in a specification.

3.1.4 Implementation

The word “implementation” can create confusion if researchers and practitioners
from different fields talk to each other. For a software engineer, an implementation is
a running software program. For an information systems engineer, implementations
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consist of databases and people collaborating to achieve an organizational goal. For
a business manager, an implementation is an organizational change.

The confusion disappears if we define an implementation of a treatment as
the application of the treatment to the original problem context. So instead of the
word “implementation,” we can always read “transfer to the problem context.” What
counts as an implementation depends on what problem context we have in mind.

With respect to real-world problems, design science projects are always restricted
to the first three tasks of the engineering cycle: problem investigation, treatment
design, and treatment validation. We call these three tasks the design cycle, because
design science research projects usually perform several iterations through this
cycle.

The confusion about what constitutes an implementation appears in design
science projects as follows: From the point of view of an external stakeholder, the
researcher performs a few iterations through the design cycle and never produces
an implementation in the social problem context of the research project. But from
the point of view of the researcher, he or she produces many implementations and
tests them all. The confusion is resolved if we realize that the external stakeholder
and the researcher are thinking of different problems and therefore mean something
different when talking about an “implementation”:

� In the DOA project, the researcher implemented several prototypes of DOA algorithms and of
simulations of plane waves that arrive at an antenna array. The researcher’s goal was to investigate
properties of these algorithms. So he investigated the problem of estimating direction of arrival of
a plane wave, designed a prototype and context simulation to do this estimation, validated the
design, and implemented it. He then used it for his goal, which was to investigate the performance
of the algorithms. During this use, he may have evaluated the quality of the prototypes and context
simulations and may have improved them in light of this evaluation.
For the sponsor, a manufacturer of processors, the researcher never did more than validate
possible treatments of the problem of DOA recognition in a TV reception system of a car. No
implementation was produced, because none of the prototypes produced by the researcher was
used in any of their products. From the sponsor’s point of view, the researcher did not even have
to do any problem investigation or treatment design. Rather, the researcher merely had to learn
what is already known about the problem of TV signal reception in a moving car and about the
available algorithms for DOA estimation. The original part of the research, from the point of view of
the manufacturer, was to validate these algorithms for the goal of TV signal reception in a moving
car.

In the rest of the book, I will assume that there is a problem context of external
stakeholders, and unless otherwise stated, “implementation” is transfer to that
problem context. So henceforth, unless otherwise stated, implementation is the same
as technology transfer.

Design science research projects do not perform the entire engineering cycle but
are restricted to the design cycle.2 Transferring new technology to the market may
be done after the research project is finished but is not part of the research project.
Appendix A summarizes the design cycle in the form of a checklist.
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3.1.5 Validation and Evaluation

To validate a treatment is to justify that it would contribute to stakeholder goals if
implemented. In the engineering cycle, validation is done before implementation.
It consists of investigating the effects of the interaction between a prototype of
an artifact and a model of the problem context and of comparing these with
requirements on the treatment. Based on this, we develop a design theory, which
is a theory of the properties of the artifact and its interaction with the problem
context. Using this theory, we then predict what would happen if the artifact were
implemented, i.e., if it were transferred to the problem context.

Validation is contrasted with evaluation, which is the investigation of a treatment
as applied by stakeholders in the field. In the engineering cycle, evaluation is done
after implementation. In implementation evaluation, we have the benefit of hindsight
and can use experience of external stakeholders with the implemented artifact to
improve our design theory of it.

Validation and evaluation are different research goals that require different
research approaches. The goal of validation is to predict how an artifact will interact
with its context, without actually observing an implemented artifact in a real-world
context. Validation research is experimental and is usually done in the laboratory. In
validation research, we expose an artifact prototype to various scenarios presented
by a model of the context, to see how it responds. Frequently used research
methods are modeling, simulation, and testing, methods that are called “single-case
mechanism experiments” in this book (Chap. 18).

The goal of evaluation research, by contrast, is to investigate how implemented
artifacts interact with their real-world context. Evaluation research is field research
of the properties of implemented artifacts. Frequently used research methods are
statistical surveys and observational case studies (Chap. 17), but experimental
research can be used too, as we will see later.

A special case is technical action research, which is a method to test a new
artifact in the real world by using it to solve a real-world problem (Chap. 19). This
is validation research, done in the field. The artifact is still under development and
is not used by stakeholders independently from a research context. The artifact is
used by researchers to test its properties under real-world conditions.3

3.2 Engineering Processes

The engineering and design cycles provide a logical structure of tasks but do not
prescribe the process of engineering or of designing. They tell us that to design
a treatment, we must understand the problem to be treated and that to justify the
choice for a treatment, we must validate it before it is implemented. The engineering
cycle also tells us that to learn from an implementation, we must evaluate it.
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The engineering and design cycles do not tell us how to manage these processes.
Management is achieving goals by the work of others, and managers must acquire
resources, organize them, make plans, motivate people, and check results [1, 7].
None of these tasks are mentioned in the engineering cycle.

In particular, the engineering cycle does not prescribe a rigid sequence of
activities. Possible execution sequences include, but are not limited to, the following
sequences [13, pp. 348 ff]:

• In the linear waterfall development process, one sequential pass through the
engineering cycle is made, without backtracking. This is possible if the problem
is fully understood at the end of problem investigation, and treatment validation
or treatment implementation do not give reason to redesign the treatment.

• In agile development, many sequential passes through the cycle are made. In
each pass, a problem is treated of a size small enough to pass through the entire
engineering cycle in about two calendar weeks.

• When scaling up new technology from the laboratory to real-world condi-
tions, many passes through the engineering cycle are made. Initially, simplified
problems are treated in idealized conditions. Later, simplifying assumptions
are dropped until real-world conditions are approached. Each iteration through
the engineering cycle aims at treating a problem at some level of realism or
idealization, and the artifact designed and tested is a prototype geared to treating
that problem.

• In systems engineering, first a number of iterations through the design cycle
are performed, in which a problem and its possible treatments are described,
specified, and validated conceptually, but no implementation is attempted. After
each iteration, a decision is made to stop or to go ahead with the next iteration.
Later, one or more passes through the entire engineering cycle are made, all of
which are aimed at treating the same complex problem that is the goal of the
entire systems engineering process. Each iteration through the engineering cycle
uses knowledge about the problem and treatment generated by the previous ones.
The next iteration may be started when the previous iteration is still running,
leading to the concurrent but asynchronous execution of the engineering cycle
for increasingly sophisticated versions of the artifact, all aimed at treating the
same complex problem.

This does not exhaust the possible ways in which the engineering cycle can be
executed in practice, but it suffices to remove the impression that the engineering
cycle prescribes a single sequence of activities.

In design science, only the first three tasks of the engineering cycle are
performed. This too must be managed. The research manager must manage the
interface with the social context to acquire resources and align goals with stakehold-
ers, as well as ensure that design problems and knowledge questions are formulated
properly and answered in a methodologically sound way. The different activities
in the design cycle are iterated over and may even be performed simultaneously for
different aspects of the problem and for alternative treatments. Knowledge questions
must be answered, which may require doing empirical research. All of this requires



www.manaraa.com

Notes 33

managing resources and time within the project budget. Managing this is very
important, but it is not treated in this book.

3.3 Summary

• The design cycle consists of problem investigation, treatment design, and
treatment validation.

• The design cycle is part of the engineering cycle, in which a designed and vali-
dated treatment is implemented in the problem context, and the implementation
is evaluated.

• Implementation evaluation may be the problem investigation of a new engineer-
ing cycle.

• Managing the research and development process includes deciding what to do
when, how to align with stakeholders, and how to use finite resources to achieve
the research goal. This is out of scope of the engineering and design cycles.

Notes

1Page 27, the engineering cycle. The engineering cycle is well known in industrial product
engineering as described, for example, by Cross [3], Jones [6], and Roozenburg and Eekels [10].
The engineering cycle is also present in Hall’s [5] classical description of systems engineering,
Archer’s analysis of the architecture design process [2], and the logic of mechanical engineering
described by Pahl and Beitz [8]. It sometimes goes by different names in different disciplines,
but the structures recognized in different disciplines are virtually the same. Van Strien [12] calls
it the regulative cycle and argues that it is the structure of action in practical disciplines such as
consulting and psychotherapy.

2Page 30, the design cycle. Peffers et al. [9] define a design science research methodology
(DSRM) that is a slightly elaborated design cycle.

Peffers et al. [9] Design cycle

Problem identification and motivation Problem investigation

Objectives of a solution Treatment design: specify requirements

Design . . . Treatment design: the rest

. . . and development Validation: instrument development. Develop

prototype and model of context

Demonstration Validation: effects, trade-offs, sensitivity?

Evaluation Validation: do effects satisfy requirements?

Communication

Peffers et al. elaborate validation into some of its subtasks. To answer the validation questions,
research instruments must be developed, namely, artifact prototypes and models of the context.
They also include a communication task, which in this book is viewed as part of research
management.
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Gorschek et al. [4] discuss a technology transfer process that consists of the design cycle
followed by a release of the technology for implementation. We discuss this process in Chap. 16.

3Page 31, validation versus evaluation. Another potentially confusing boundary case is that
we may validate artifacts that are already implemented in the real world. For example, we may
investigate a programming technique that is already in widespread use by software engineers. If
we investigate properties of this technique in the laboratory, for example, by means of students who
use the technique in the laboratory, then we are doing validation research. We are not investigating a
real-world implementation of the technique but are investigating a model of the real world, namely,
a student project in which the technique is used. Results from this study may provide additional
insight in real-world properties of the technique.

The key point in distinguishing validation from evaluation is that in evaluation researchers
study an artifact in the real world that is used by stakeholders independently from the researchers,
whereas in validation, researchers experiment with a model of how stakeholders would use the
artifact in the real world.
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Chapter 4
Stakeholder and Goal Analysis

Design science research projects take place in normative context of laws, regu-
lations, constraints, ethics, human values, desires, and goals. In this chapter, we
discuss goals. In utility-driven projects, there are stakeholders who have goals
that the research project must contribute to. In exploratory projects, potential
stakeholders may not know that they are potential stakeholders, and it may not
be clear what their goals are. Nevertheless, or because of that, even in exploratory
projects, it is useful to think about who might be interested in the project results
and, importantly, who would sponsor the project. After all, design research should
produce potentially useful knowledge. We therefore discuss possible stakeholders
in Sect. 4.1 and discuss the structure of stakeholder desires and goals in Sect. 4.2. In
Sect. 4.3, we classify possible conflicts among stakeholder desires that may need to
be resolved by the project.

4.1 Stakeholders

A stakeholder of a problem is a person, group of persons, or institution affected
by treating the problem. Stakeholders are the source of goals and constraints of the
project, which are in turn the source for requirements in the treatment, and so it is
important to identify relevant stakeholders (Fig. 4.1).

The goal of treatment design is that some stakeholders are better off when the
problem is treated. However, for any treatment, some stakeholders may be better off
in some respects and worse off in others. Even more troubling, for some treatments,
some stakeholders may be worse off overall when the problem is treated that way.

© Springer-Verlag Berlin Heidelberg 2014
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Implementa�on evalua�on /
Problem inves�ga�on

Stakeholders? Goals?
Conceptual problem framework?
Phenomena? Causes, mechanisms, reasons?
Effects? Contribu�on to Goals?

Treatment designTreatment valida�on

Treatment implementa�on

Specify requirements!
Requirements contribute to Goals?
Available treatments?
Design new ones!

Ar�fact X Context produces Effects?
Trade-offs for different ar�facts?
Sensi�vity for different contexts?
Effects sa�sfy Requirements?

Fig. 4.1 The place of stakeholder and goal analysis in the engineering cycle

Table 4.1 gives a checklist of possible stakeholders in a design science research
project, based on a checklist for engineering projects provided by Ian Alexander [1].
Another list is given by Clements and Bass [3], shown as a diagram in Fig. 4.2. Here
are some examples:

� The DOA project to develop a satellite TV reception system for cars is an engineering project.
Stakeholders in the project are the chip manufacturer NXP (sponsor), car component suppliers
(responsible for interfacing systems), car manufacturers (functional beneficiary of the TV satellite
reception system), garages (maintenance operators), car drivers (functional beneficiary), and
passengers (normal operators).
In the research project that investigated DOA algorithms, only the sponsor was important (the
sponsor is always important), and the passenger goal to watch satellite TV in a car was important.
The passenger goal motivates the requirement that accuracy of the DOA algorithm should be 1ı

and execution time of one iteration less than 7.7 ms.
� Stakeholders of the DLC project are KPMG (sponsor), KPMG consultants (end users, i.e., normal

operators), and two classes of functional beneficiaries, namely, cloud service providers and
European companies who are or want to become clients of cloud service providers (see also p. 8).
Representatives of all of these stakeholders were interviewed for the project.

4.2 Desires and Goals

Stakeholders may have different levels of awareness of a problem and its possible
treatments [2]. At the lowest awareness level, a stakeholder is not aware of the
problem nor of the need of a treatment. For example, a car driver may feel fine with
the audiovisual equipment in his or her car and not be aware of any problem with it.

At the second level of awareness, a stakeholder is aware of an improvement
possibility but is not interested in actually carrying out the improvement. For
example, a car driver may be aware that there is an improvement possibility in the
audiovisual equipment in his car but not be interested in realizing this: He or she has
no children who may want to watch TV in the backseat of his car. The stakeholder
is indifferent, and there is still no problem.
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Table 4.1 List of possible stakeholders of an artifact, based on the list given by Ian Alexander [1]

The system under development (SUD) con-
sists of the artifact and these stakeholders
interacting with the artifact

• Normal operators give routine com-
mands to the artifact, sometimes
called “end users”

• Maintenance operators interact with
the system to keep it running

• Operational support staff support
normal operators in their use of the
system and help to keep the system
operational

Stakeholders in the immediate environment of
the SUD, interacting with the SUD

• Functional beneficiaries benefit from
the output produced by the system,
sometimes called “users” of the arti-
fact

• Stakeholders responsible for interfac-
ing systems have an interest in the
requirements and scope of the artifact

Stakeholders in the wider environment of the
SUD

• A financial beneficiary benefits from
the system financially, such as a
shareholder or director of the com-
pany that will manufacture the artifact

• A political beneficiary benefits from
the system in terms of status, power,
influence, etc.

• A negative stakeholder would be
worse off when the artifact is intro-
duced in the problem context

• A threat agent is a stakeholder who
wants to hurt the system, e.g., by
compromising its integrity or stealing
confidential information from it

Stakeholders involved in the development of
the SUD

• The sponsor initiates and provides
a budget for developing the artifact.
Important source of goals and require-
ments for the artifact

• The purchaser is, in this taxonomy,
a stakeholder responsible for termi-
nating development successfully. The
purchaser could be a project manager
or a product manager responsible for
a wider range of projects all related to
one product

• Developers such as requirements
engineers, designers, programmers,
and testers build the system. They are
not normal operators of the system
and do not benefit from its output dur-
ing normal operation

• Consultants support development of
the artifact

• Suppliers deliver components of the
artifact

Fig. 4.2 List of possible
stakeholders of an organization
given by Clements and
Bass [3]
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Or the stakeholder may be aware of the improvement possibility and desire it.
But still, he or she does not want, or is not able, to commit resources to realize this.
The stakeholder may have no time or no money to realize this desire, or the desire is
not strong enough to commit the time or money needed to achieve the desire. In this
case, the stakeholder desires an improvement but has not set it as a goal to achieve.
Most of us are in this state for most of our desires. We may like the option to have
satellite TV in a car, but not desire it so much that we want to spend the money to
actually acquire a car with satellite TV. It is too expensive, so we forget about it.
There is a latent improvement possibility, and we do not spend attention to it.

We define a stakeholder goal as a desire for which the stakeholder has com-
mitted resources. The stakeholder is willing to achieve this goal and has committed
money and/or time to achieve it. All stakeholders have finite resources, and only a
few desires will be promoted to the status of goal. Here are two examples:

� In the DOA project, the manufacturer had committed a budget to achieve the goal of producing a
directional antenna system for satellite TV. The other stakeholders were either not aware of the
possibility to receive satellite TV or were aware but had not committed budget to achieve it.

� In the DLC project, the sponsor was an auditing company that had committed budget to develop
and implement a method for auditing data location compliance. The other stakeholders had not yet
committed budget to offer or to use data location compliant cloud services but were ready to do so
if regulatory obstacles were out of the way.

4.3 Desires and Conflicts

Goals are desires for which resources are committed. Because stakeholders acquire
artifacts to contribute to their goals, engineers and design science researchers will
have to know about human desires. If there were no human desires, there would be
no need for artifacts, and engineers and design science researchers would be out of
a job.

The first thing to note is that anything can be the object of desire. Even desires
can be the object of desire, such as when I wish I would desire to play a game with
the pleasure that my grandson does. I can also desire to have a fear, as when I visit a
scary movie, or desire to have a goal entertained by other stakeholders but to which
I have not committed myself because I do not have enough budget. Figure 4.3 lists
all elements of the context of an artifact as a possible objects of desire. Comparing
this with Fig. 1.1 (p. 4) of the context of an artifact, we see that all possible context
elements are possible objects of desire. By implication, any element of the context
can be a stakeholder goal.

Second, desires can conflict with each other, and therefore goals can conflict with
each other. A conflict among desires may be a reason to cancel a design project or
to change its goals. Here are a few important kinds of conflicts between desires:

• Two desires are in logical conflict if it is logically impossible to realize them
both. This means that there is no possible state of the world that could satisfy
both desires and that this can already be shown by analyzing a description of
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Fig. 4.3 Any element of the
context of an artifact can be the
object of stakeholder desire

A stakeholder a�aches 
posi�ve, nega�ve or zero 

value to ...

Goals

Norms

Budgets

Values

Conceptual 
structures

TechniquesMethods

Business 
processes

Services

Organiza�ons

Hardware 
components 
and systems

So�ware 
components 
and systems

Desires
….

Fears

both desires. For example, the desire to spend your money logically conflicts
with the desire to keep it. The meaning of the words “spend” and “keep” are in
logical conflict. It makes no sense to try to develop technology that harmonizes
these desires.

• Two desires are in physical conflict if it would violate the laws of nature to satisfy
them both. This means that there is no possible state of the world that could
satisfy both desires, and this can be shown by empirically validated knowledge
about the real world (the laws of nature). For example, the desire to eat more is in
physical conflict with the desire to lose weight. The human body does not work
that way. It is impossible to develop technology that would make these desires
compatible.

• Two desires are in technical conflict if it would be physically possible to realize
them both, but we currently have no technical means to achieve this. This points
at an opportunity for new technical development. For example, it is at the time of
writing not technically possible to receive satellite TV in cars, but new technical
developments will probably make this possible in the near future. Until then, the
desire to watch TV is in technical conflict with the desire to travel in a car at the
same time.

• Two desires are in economic conflict if it is technically possible to realize them
both, but this exceeds the available budget of the stakeholder. For example, a
stakeholder may wish to have a 30 in. screen for his PC, but this exceeds his
budget. He has to settle for a cheaper screen or a cheaper PC. This indicates a
potential for further technical improvement that would make artifacts cheaper.

• Two desires are in legal conflict if it would be illegal to realize them both. For
example, it is illegal for a European company to store privacy-sensitive data in the
cloud outside Europe. The desire to store privacy-sensitive data legally conflicts
with the desire to save cost by storing them noncompliantly in the cloud.

• Two desires are in moral conflict if satisfying them both would be morally wrong.
For example, storing privacy-sensitive data and selling it to third parties may
be legal, especially if this is announced in the conditions of use that the user
subscribed to by clicking on a button. But many stakeholders would consider this
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morally wrong. For these stakeholders, the desire to store the data is in moral
conflict with the desire to sell them.

For design researchers, the technical and economic conflicts are the interesting ones
because design research may resolve these by making new things possible or by
reducing the cost of artifacts.

4.4 Summary

• The actual and potential stakeholders of a design science project may motivate
some project goals.

• A stakeholder of a problem is a person, group of persons, or institution who is
affected by treating the problem.

• A stakeholder goal is a desire for the achievement of which the stakeholder has
committed a budget of time, money, or other resources.

• Stakeholder desires and hence stakeholder goals may conflict. Some conflicts
cannot be resolved; others may be resolvable by technical means or by increasing
the budget. Resolution of some conflicts may be illegal or immoral.
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Chapter 5
Implementation Evaluation and Problem
Investigation

Treatments are designed to be used in the real world, in the original problem context.
Once they are implemented in the original problem context, this is an important
source of information about the properties of the artifact and about the treatment
that it provides. This may or may not trigger a new iteration through the engineering
cycle.

In the social sciences, the study of real-world implementations of social programs
is called an evaluation study. We follow this practice but attach a broader meaning
to this term so that it includes the study of real-world implementations of artifacts.
In Sect. 5.1, I distinguish and illustrate the two research goals of implementation
evaluation and problem investigation, and in Sect. 5.2 we look at some examples of
design theories that can be used and produced by this research. In Sect. 5.3, a few
research methods that can be used for this kind of research are listed.

5.1 Research Goals

In implementation evaluation, the research goal is to evaluate an implementation of
a treatment after it has been applied in the original problem context. The research
goal is not necessarily to prepare for further improvement but to describe, explain,
and evaluate the effects of a past improvement.

In problem investigation, the research goal is to investigate an improvement
problem before an artifact is designed and when no requirements for an artifact have
been identified yet. The research goal is to improve a problematic situation, and the
first task is to identify, describe, explain and evaluate the problem to be treated.

Implementation evaluation and problem investigation are both real-world
research. To study implementations and problems, you have to visit the real world.
Implementation evaluation and problem investigation both contain the identification

© Springer-Verlag Berlin Heidelberg 2014
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Table 5.1 Example knowledge questions in implementation evaluation and problem investigation

Implementation evaluation Problem investigation

� Descriptive: What effects does the imple-
mented artifact have?

� Descriptive: What are the phenomena?

� Explanatory: How does the artifact cause
these effects? By what mechanisms?

� Explanatory: How are they caused? By
which mechanisms are they produced? For
what reasons are effects created?

� Evaluative: Do the effects contribute to
and/or detract from stakeholder goals?

� Evaluative: Do the phenomena contribute to
and/or detract from stakeholder goals?

� Explanatory: Why do they contribute and/or
detract this way?

� Explanatory: Why do they contribute and/or
detract this way?

Stakeholders? Goals?
Conceptual problem framework?
Phenomena? Causes, mechanisms, reasons?
Effects? Contribu�on to Goals?

Implementa�on evalua�on /
Problem inves�ga�on

Treatment designTreatment valida�on

Treatment implementa�on

Specify requirements!
Requirements contribute to Goals?
Available treatments?
Design new ones!

Ar�fact X Context produces Effects?
Trade-offs for different ar�facts?
Sensi�vity for different contexts?
Effects sa�sfy Requirements?

Fig. 5.1 The place of problem investigation and implementation evaluation in the engineering cycle

of stakeholders and goals, as discussed in the previous chapter. This is different from
the investigation and evaluation of phenomena, which is the focus of this chapter.

Table 5.1 lists some typical research questions of both kinds of studies. Note
the presence of evaluation questions, which are important in design science. An
evaluation question is a special kind of descriptive question, in which we compare
observed phenomena with a norm. As indicated by the questions in Fig. 5.1, in
implementation evaluation and problem investigation, we are interested in the
contribution, positive or negative, of phenomena and of their effects to stakeholder
goals.

The research questions and methods used for both kinds of research goals
are the same, but as we saw, the top-level goals are different: evaluation in one
case and improvement in the other. Also, their object of study may be different.
Implementation evaluations by definition study an artifact in context, whereas
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a problem investigation does not necessarily have to do so. These distinctions
are gradual, and there are many intermediate cases, as the following examples
illustrate:

� In the DLC project, the following problem research questions can be asked [7, p. 14]:

– What technical solutions do cloud service providers currently use to satisfy these goals?
– What obstacles do cloud service providers experience that prevent them to show data location

compliance? How do these obstacles come about?

These questions evaluate the state of the practice of cloud service provision (an artifact) with
respect to the goal of data location compliance (a context), and so this is an implementation
evaluation.

� In the ARE problem, we can ask the following questions about implementations of agile prac-
tices [8]:

– Who are the decision-makers in the prioritization process?

� What roles do they play in the organization?
� What are their responsibilities in the decision-making process? Why these?

– Which value-based criteria do companies use to perform value-driven decisions during agile
prioritization? Why?

– What characteristics of the project settings influence the way a requirements prioritization
process is carried out in a project? How do they influence this?

These questions investigate the state of the practice of the implementation of agile requirements
engineering but do not ask for an evaluation, so we can view this as an implementation investigation
but not necessarily as an implementation evaluation.

� Our third example is from a project that we will call SPI, for software process improvement [10].
The goal of this research project was to evaluate the effect of SPI programs based on empirical
evidence from one company. The core research questions of the project are [10, p. 11]:

– What are the quantitative effects of software process improvement on software development
productivity?

– How are these effects produced?

The goal was to use the understanding gained by these empirical evaluations to improve the
effectiveness of SPI programs and gain continuing support from management for SPI programs.
So this was an implementation evaluation as well as a problem investigation project.

5.2 Theories

The goal of implementation evaluation and problem investigation is to build a sci-
entific theory of real-world implementations and real-world problems, respectively.
We discuss the structure and function of scientific theories in Part III and here only
give examples. But to understand the examples, I give a crash course on the nature,
structure, and function of scientific theories:

A scientific theory is a belief about a pattern in phenomena that has survived testing
against empirical facts and critical reviews by peers. It consists of a conceptual framework
plus generalizations about patterns in phenomena. The conceptual framework can be
used to frame a research problem, describe phenomena, and analyze their structure. The
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generalizations may be useful to explain the causes, mechanisms or reasons for phenomena.
This in turn may be useful to predict phenomena, or to justify artifact designs. Not each
generalization may be useful for each of these purposes.

This finishes the crash course. It mentions the major elements of implementation
evaluation and problem investigation such as a conceptual framework and expla-
nations of phenomena (Fig. 5.1). Examples are given below, and a more detailed
treatment, with literature references, is given in Part III of the book.

The crash course talks about scientific theories in general. This includes design
science. Is there anything specific we can say about design science? Two things.
First, design science studies the interactions between an artifact and its context. We
call theories about (artifact � context) design theories.

Second, the phenomena studied in implementation evaluation and problem
investigation are real-world phenomena. Theories developed in this kind of research
can make less idealizations and must make more realistic assumptions about
conditions of practice than theories developed in basic science. We discussed
the need to balance idealizations against conditions of practice in design science
research earlier, in Chap. 1. See also Fig. 1.4 (p. 9).

With this background, let us now look at a number of examples, in which we
emphasize the words italicized above:

� In the DLC project, literature was studied, and experts were interviewed to develop a conceptual
framework that defined key concepts such as that of cloud computing, private cloud, public cloud,
infrastructure as a service, etc. This framework could be used to frame the research problem, i.e., to
state the knowledge goal and formulate knowledge questions. It could also be used to analyze the
structure of the cloud service provision market and to describe goals and problems of stakeholders
in this market. The theory contained some simple descriptive generalizations, namely, that these
phenomena usually occur in cloud service provision markets.

� In the ARE project, the researcher did a literature study and performed observational case studies
to develop a conceptual framework of requirements engineering in agile projects done for small-
and medium-sized enterprises (SMEs). The framework defines key concepts such as business
value, business requirement, risk, and priority [8]. These concepts can be used to analyze and
describe phenomena in agile requirements engineering.
One generalization found was that SMEs have a limited budget for software development, and their
business priorities are not in favor of putting a customer on-site, even though putting a customer on-
site is required by all agile development methods. This is a design theory: it says something about
the interaction between an artifact (agile development) and a context (SMEs). The generalization
contains an explanation: limited budgets and different business priorities are causes and reasons,
respectively, for not putting as customer on-site of the project. The generalization can be used to
predict that this will happen in other SMEs too. This is useful if we want to redesign an agile method
to cater for this circumstance.

� The SPI project used a conceptual framework for software productivity measurement and
measurement of requirements engineering activities. Statistical research produced some gene-
ralizations, such as that for larger projects in the case organization, facilitated workshops increase
project productivity, whereas for smaller projects one-on-one requirements interviews appeared
to be more productive [10, p. 62]. This is a design theory, as it is about artifacts (requirements
engineering techniques) in a problem context (in-house software development). No explanation
was given of this relationship. Nevertheless, the statistical generalizations can be used to predict
the effect of introducing requirements engineering in some projects.

� The DOA project used a well-established signal theory found in textbooks. The conceptual
framework contains concepts such as wave, wave front, plane wave, frequency, wave length,
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bandwidth, noise, etc. A generalization of the theory is that � D 2� .d=�/ sin � , where � is the
direction of arrival of a plane wave with wavelength �, d is the distance between antennas in an
antenna array, and � the phase difference between the waves arriving at two adjacent antennas
in the array. It is a design theory how an artifact (antenna array) interacts with a context (plane
waves). It can be used to explain why, for example, � changes when � changes and to predict that
it will change when � changes. This is used in the design of antenna arrays.
The theory makes some idealizations that may be violated in practice: waves are perfectly plane,
bandwidth is narrow, etc. [13, pp. 6–7]. However, these idealizations are still realistic enough for
the theory to be used to design antenna arrays.

5.3 Research Methods

There are many ways to investigate implementations and problems: you can read
the scientific, professional, and technical literature, and you can interview experts.
If none of this provides sufficient knowledge and you want to add to the published
body of scientific knowledge, then you can decide to do scientific research yourself.
Below is a brief description of some of the frequently used research methods for
implementation evaluation and problem investigation. Most of these are described
in detail in Part V of the book, and here I give only a few examples.

5.3.1 Surveys

Instances of an implementation or of a problem can be surveyed statistically, to
find real-world performance data and identify statistical regularities. Anything about
which data can be obtained in large numbers can be surveyed. Surveys can be taken
by paper questionnaires, web forms, oral interviews, or other data collection means.

We can survey bug reports, change requests, problem reports, company memos,
meeting notes, twitter messages, chat messages, emails, Internet traffic, intrusion
attempts, log-in attempts, etc. We can also survey people’s memory of past events,
expectations of the future, opinions about company strategies, subjective theories
about causes and effects of problems, etc.

Surveys are useful for implementation evaluation and problem investigation
because they can provide information about real-world phenomena. Their disadvan-
tage is that they may disturb the phenomena investigated (answering a question is
disturbing and takes time) and can investigate only a few aspects of the phenomena.

Survey methods are not discussed in this book. Useful references to find out
more are Babbie [3, Chap. 12], Robson [9, Part III], and Denscombe [4]. Here is an
example:

� Agner et al. [1] surveyed the use of UML in embedded software development in Brazil using
a web questionnaire. The research goal was to learn about the use of UML and model-driven
development, the practice of embedded software development, and so this was an implementation
evaluation.
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Completed questionnaires were received from 209 respondents out of a total of 1,740 software
developers and researchers contacted. Findings included the observation that among the respon-
dents, UML is used mostly by experienced software developers (more than 5 years experience)
and that among the factors that prevent the use of UML for embedded software development are
short lead time for software development and lack of knowledge about UML among developers.

5.3.2 Observational Case Studies

In an observational case study, we observe a single case without intervening. We try
to minimize any influence we may have on the case. Case study research can extend
over several cases that are each studied in detail. The difference with statistical
surveys is that in case study research, the sampled cases are studied one by one,
whereas in statistical research, samples are selected and studied as a whole.

Observational case studies are useful for implementation evaluation and problem
investigation because they give potential access to the underlying mechanisms that
produce real-world phenomena. Their advantage is that they may give access to all
aspects of the studied phenomena. Their disadvantages are that they may disturb
the phenomena (being observed is disturbing), that they give information about
only a few cases, and that about each case an unanalyzable mountain of data may
be collected. Chapter 17 gives more information on how to do observational case
studies. Here are two examples:

� Aranda et al. [2] interviewed managers of seven small companies to find out how they managed
their software projects and elicited customer requirements. The companies were selected in a so-
called snowball sampling procedure, which means that each company suggested other companies
to visit as well. The focus of the study was on requirements engineering and not on any particular
artifact used in this context, so this is a problem investigation.
One of the findings was that it was often the entrepreneur, i.e., the one who started the company,
who did the requirements engineering. One explanation for this is that a characteristic competence
of an entrepreneur is the ability to translate customer needs in technical solutions, which is the
goal of requirements engineering too.

� Myers [6] describes a study of an information systems implementation project performed for the
New Zealand government. His study is a detailed implementation evaluation, where the focus is
on social mechanisms that were responsible for the failure. Data was collected through primary
documents and interviews, and the findings were that this project was highly politicized, where
some stakeholders found it in their own interest to make this project fail and to publicized this
failure in the media.

5.3.3 Single-Case Mechanism Experiments

A single-case mechanism experiment is a test of a single case in which the
researcher applies stimuli to the case and explains the responses in terms of
mechanisms internal to the case. This is what you do when you test a program:
You feed it some input, observe the output, and explain how the output could have



www.manaraa.com

5.3 Research Methods 47

been produced by mechanisms internal to the program. It is also what a physician
does when investigating a patient: The patient is exposed to some stimuli, responses
are observed, and these are explained by mechanisms internal to the patient. And
it is what we do to test artifacts in the real world. For example, to understand
the IT network of a company, we can expose it to an input scenario, measure
its performance, and then explain this in terms of the mechanisms internal to the
architecture of the network.

The difference between single-case mechanism experiments and observational
case studies is that in a single-case mechanism experiment, the researcher intervenes
in the case, i.e., performs an experiment, whereas in an observational case study, the
researcher does not intervene. In an observational case study, the research tries to
influence the case as little as possible. In the literature, both kinds of studies are
often referred to as “case studies,” but in this book we will distinguish them clearly.
Single-case mechanism experiments require the specification of an experimental
treatment; observational case studies require a specification of ways in which the
researcher reduces his or her influence on the case.

Single-case mechanism experiments are useful for implementation evaluation
and problem investigation because they can provide insight into the behavior of
artifacts and problematic phenomena in the real world. The researcher can create
a scenario of stimuli that helps her to understand the mechanisms that produce
phenomena. The researcher needs to have permission to apply these artificial
stimuli.

Single-case mechanism experiments can be done in the lab or in the field. The
advantage of lab research is that you can control the stimuli that the case is exposed
to. The disadvantage is that the responses in the lab may not be similar to the
responses in the field. If done in the field, the situation is reversed. Responses may
now be similar to those of other real-world cases, but in the field there may be many
other uncontrolled events happening at the same time that can make it difficult to
interpret what is going on. Chapter 18 discusses single-case mechanism experiments
in detail:

� Terwellen [12] extended a software system called SIL that is used by Océ, a manufacturer of
printers and copiers, to simulate parts of a printer. This is used during new printer development.
As a preparation for the extension of SIL, the researcher wanted to understand the mechanisms
and performance properties of SIL and so he tested it. This part of the project is an implementation
evaluation, and the test is a single-case mechanism experiment done in the real world. It is single
case, because only one system, SIL, is tested. It is an experiment, because the researcher exposed
SIL to a series of stimuli in order to learn something from its behavior. And it is a mechanism
experiment, because outputs were explained in terms of mechanisms internal to the architecture
of SIL.

5.3.4 Statistical Difference-Making Experiments

In a statistical difference-making experiment, we apply a treatment to a sample of
cases selected from a population and compare the average outcome with the average
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outcome of another treatment on another sample drawn from the same population.
If there is a difference, the researcher analyzes the experiment to see if this is caused
by the difference in treatments or by another cause. This is the logic of controlled
trials of medicines, where a new medicine is compared to an existing medicine or a
placebo. It is also used in empirical software engineering to compare the effects of
two software engineering techniques.

There are many variations of this design, of which the following must be
mentioned here. In this variant, samples are drawn from different populations and
receive the same treatment. Any observed difference between average outcomes is
analyzed to see if it is produced by a difference in the populations. For example, we
can give the same medicine to different groups to see if the medicine has different
effects on different kinds of people. The logic and statistics of difference-making by
treatments or by groups are the same.

Statistical difference-making experiments can be used in implementation eval-
uation and problem investigation by doing field experiments in the population of
interest. The advantage is that this allows us to show a causal effect without relying
on knowledge of internal mechanisms that produce this effect. The disadvantage of
real-world research is that field experiments in software engineering and informa-
tion systems are extremely expensive [11], because many resources are needed to
build samples of sufficient size. Also, uncontrolled field conditions may make it hard
to interpret the outcome. Statistical difference-making experiments are described in
detail in Chap. 20:

� Hannay et al. [5] investigated the effects of personality, expertise, task complexity, and country
of employment on pair programming performance, by creating pairs of professional software
engineers exhibiting different combinations of these variables. The researchers studied the
difference in performance of these pairs in terms of the quality of the program and the effort it
took to produce it.
This is an implementation evaluation because it was a field study of an artifact (pair programming)
evaluated on some performance parameters. It was extremely expensive, because participants
were paid professional software engineering wages. The situation was still somewhat artificial
because some real-world aspects were missing, such as group dynamics and long-duration
cooperation.
The findings were that personality traits have modest predictive value for pair programming
performance compared to expertise, task complexity, and country.

5.4 Summary

• Implementation evaluation is the investigation of artifacts that have been trans-
ferred to their intended real-world problem context. The research goal is to
evaluate them with respect to actual stakeholder goals.

• Problem investigation is the investigation of real-world problems as a preparation
for the design of a treatment for the problem. The research goal is to learn about
stakeholder goals and to understand the problem to be treated.
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• Both kinds of empirical study ask the same research questions that are about
phenomena, causes and effects, and the contribution of phenomena to stakeholder
goals. Questions can be open or closed and descriptive or explanatory.

• Implementation evaluation and problem investigation aim to develop theories of
phenomena. A theory consists of a conceptual framework and generalizations.
If the theory is about the interaction of an artifact with its context, we call it a
design theory.

• Implementation evaluation and problem investigation are real-world research.
Different research methods can be used, including surveys, observational case
studies, single-case mechanism experiments, and statistical difference-making
experiments.
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Chapter 6
Requirements Specification

In design science projects, there may be uncertainty about stakeholders and their
goals, and so treatment requirements may be very uncertain. It nevertheless pays off
to spend some time on thinking about the desired properties of a treatment before
designing one (Fig. 6.1). The requirements that we specify provide useful guidelines
for searching possible treatments.

In Sect. 6.1, requirements are defined as desired treatment properties. The
desirability of a requirement must be motivated in terms of stakeholder goals by
a so-called contribution argument, which is explained in Sect. 6.2. In Sect. 6.3,
several ways to classify requirements are discussed. One important class is the
class of nonfunctional requirements, which are usually not directly measurable.
Nonfunctional requirements must be operationalized if we want to measure them.
This is discussed in Sect. 6.4. This section is also important for the design of
measurement procedures in empirical research, treated later.

6.1 Requirements

A requirement is a property of the treatment desired by some stakeholder, who has
committed resources (time and/or money) to realize the property. In other words, it
is a goal for the to-be-designed treatment. As we will see, treatment requirements
are always decomposed into artifact requirements and context assumptions:

� In the DLC problem, the following requirements for the data location compliance checking method
were specified:

R0 The method must allow auditors to audit data location.
R1 The method must be usable for KPMG consultants, i.e., the effort to learn and effort to use

are acceptable. KPMG is the company that sponsored the project.
R2 The method must be useful for KPMG consultants, i.e., by using the method, consultants

help CSPs and their clients.

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__6
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Implementa�on evalua�on /
Problem inves�ga�on

Stakeholders? Goals?
Conceptual problem framework?
Phenomena? Causes, mechanisms, reasons?
Effects? Contribu�on to Goals?

Treatment designDesign valida�on

Design implementa�on

Specify requirements!
Requirements contribute to Goals?
Available treatments?
Design new ones!

Ar�fact X Context produces Effects?
Effects sa�sfy Requirements?
Trade-offs for different ar�facts?
Sensi�vity for different contexts?

Fig. 6.1 The place of requirements specification in the engineering cycle. The exclamation mark
indicates that requirements are produced by design actions, not found as answers to knowledge
questions

R0 is a functional correctness requirement, and the other two are performance requirements.
These requirements are motivated by stakeholder goals, and the stakeholder has committed a
budget to realize the requirements. They are meaningful under some assumptions about the
context, such as that the method is going to be used by KPMG auditors and that they will be
applied in the European union where data location regulations are in force. The requirements
motivate research questions that we have encountered earlier, in Chap. 5 (p. 43).

� Three requirements for the DOA algorithm are:

R0 The component must recognize DOA of a plane wave.
R1 The resolution of the algorithm need not be smaller than 1ı.
R2 One iteration of the estimation algorithm must not take more 7.7 ms.

R0 is a functional correctness requirement; the other two are performance requirements. The
requirements are motivated by a stakeholder goal, receiving satellite TV in a moving car, and
the manufacturer has committed a budget to realize the requirements. They are meaningful under
certain context assumptions, such as that all waves are plane and that the algorithm will be used
in a car that drives. The requirements motivate the research questions about DOA algorithms that
we have encountered earlier, in Chap. 2 (p. 21).

6.2 Contribution Arguments

Stakeholders rarely if ever are able to specify requirements. Instead, specify-
ing requirements is an important design activity of the design researcher. The
requirements are not answers to questions that we ask the stakeholders. Instead,
they are the result of design choices that we make jointly with, or on behalf of, the
stakeholders.

To justify your choice for some requirement, you have to give a contribution
argument, which is an argument that an artifact that satisfies the requirements
would contribute to a stakeholder goal in the problem context.4 A contribution
argument has the form

(Artifact Requirements) � (Context Assumptions) contribute to (Stakeholder Goal).
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Contribu�on

Design problem-solving
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Fig. 6.2 The interaction of an artifact with its context should contribute to a stakeholder goal. Questions
about goal contribution are prediction problems

Figure 6.2 shows where the contribution takes place in our design science frame-
work. Note that in a design science project, there may be several contribution
arguments for a requirement. A treatment that satisfies some requirement may,
because of that, contribute to several different goals of different stakeholders.

A contribution argument is a prediction, because it argues that when the artifact
would be inserted in its problem context, it would interact with it in a way that
contributes to stakeholder goals. The contribution argument is fallible, because
it does not provide deductively certain support to its conclusion. Here are some
examples:

� In the DLC problem, the following contribution argument is given:

– If the compliance checking method allows auditors to audit location of data stored in the cloud
and is usable and useful for KPMG auditors in their auditing practice,

– and assuming that the cloud provision market and infrastructure has the architecture as
modeled in our project,

– then the method contributes to KPMG’s goal of acquiring more customers in the cloud
provisioning market.

This argument is fallible, as the cloud provisioning market may have been modeled incorrectly by
the researcher, and the method may turn out not to be as usable and useful to consultants as initial
research suggested that it is.

� The contribution argument for the DOA algorithm is as follows:

– If the DOA algorithm satisfies the requirements that it can recognize DOA of a plane wave, with
a resolution not worse than 1ı, and an iteration time of at most 7.7 ms,

– and assuming that the DOA algorithm is part of a beamforming system, which is used to receive
satellite TV in a car,

– then the DOA estimation component of such a beamforming system contributes to the goal of
car passengers to watch satellite TV in a moving car.
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This argument appears to be quite certain, but it is not. Cars drive very fast in some countries,
and display screens may get a very high resolution, making the numbers used in the argument
obsolete. And some of the unstated assumptions about the distance of sources and the nature of
noise may be false in some contexts.

6.3 Kinds of Requirements

Requirements can be classified in many ways. For example, we may classify
them according to the stakeholder goals that they contribute to, according to the
importance of the goal (priority), or according to the deadline (urgency) by which
they should be realized [1, 7].

Sometimes, constraints on the internal composition of the artifact are distin-
guished from requirements on the externally observable properties of an artifact.
Both are desired properties of the artifact, and what is a constraint for one
stakeholder can be a negotiable requirement for another:

� For example, an enterprise architect may view a global architecture of the IT infrastructure of a
company as hard constraint on any system development project. A project manager may view this
as a negotiable requirement that might be dropped from the project.

Another classical distinction is that between the so-called functional and nonfunc-
tional requirements. An artifact function is a terminating part of the interaction
between an artifact and its context that contributes to a service to a stakeholder [8]:

� For example, estimating direction of arrival is a function of the DOA estimation component of a
satellite TV reception system, because it contributes to the service of the system.

� Methods are artifacts too and have functions too. For example, it is the function of a compliance
checking method to support its user in assessing compliance.

A functional requirement is a requirement for desired functions of an artifact.
A nonfunctional property, sometimes called a quality property, is any property

that is not a function. Nonfunctional properties are usually global properties of the
interaction between an artifact and its context. The term “nonfunctional property”
is awkward, but it is here to stay and I will use it too:

� Examples of nonfunctional properties are utility for a stakeholder, accuracy of output, efficiency
in time or space, security, reliability, usability by a stakeholder, interoperability with other systems,
maintainability for a maintainer, and portability across platforms. See Table 6.1.

A nonfunctional requirement is the requirement that an artifact has a specified
nonfunctional property. We have seen a number of examples of nonfunctional
requirements:

� The estimation algorithm should have a spatial resolution of 1ı (accuracy).
� The estimation algorithm should recognize direction of arrival within 7.7 ms (time efficiency).
� The method must be usable by consultants in their daily practice (usability).
� The method must be useful for consultants who want to check data location compliance (utility).
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Table 6.1 Some examples of properties and indicators, based on ISO standard 9126 [4]

Property Some possible indicators

Utility Stakeholder opinion about utility

Accuracy of output Domain-dependent indicators, such as spatial

resolution

Efficiency in time or space Execution time, Memory usage

Security Availability, Compliance to standards

Reliability Mean time between failures, Time to recovery

Usability by a stakeholder Effort to learn, Effort to use

Interoperability with other systems Effort to realize interface with other systems

Maintainability for a maintainer Effort to find bugs, Effort to repair, Effort to test

Portability across platforms Effort to adapt to new environment, Effort

to install, Conformance to standards

6.4 Indicators and Norms

An operationalization of a property is a measurement procedure by which evidence
for the presence of the property can be established. Functional properties are
operationalized by specifying tests for them. Nonfunctional properties are usually
operationalized by defining one or more indicators for them, variables that can be
measured and that indicate the presence of the property. In software engineering
research, indicators are usually called metrics. Table 6.1 gives some examples of
nonfunctional properties and some of their possible indicators.

Note that none of the indicators completely establishes all of the aspects of
the property that they operationalize. If a property must be operationalized by
indicators, then we may always question the validity of the operationalization. This
kind of validity is called construct validity, and it is part of the validity of conceptual
frameworks. We discuss it in Chap. 8.

A norm for an indicator is a set of required values of the indicator. Indica-
tors operationalize properties, and norms operationalize requirements. In software
engineering research, norms may be called acceptance criteria. Here are a few
examples:

� “The algorithm should recognize the direction of arrival of a plane wave.” This defines an indicator,
namely, ability to recognize DOA. It has two possible values, present and absent, and the norm is
that it should be present. This norm operationalizes a functional requirement.

� “The estimation algorithm should have a spatial resolution of 1ı or less (accuracy).” The property
accuracy is operationalized by the indicator spatial resolution. The norm not worse than one degree
operationalizes a requirement.

� “The interviewed consultants must not find any elements of the method that make it unusable.” This
is an indicator for usability by consultants. The indicator is opinion about usability, and the norm
that operationalizes the requirement is opinion is favorable.
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In many research projects, nonfunctional requirements are not operationalized.
The research goal may be to make something possible (such as data location
compliance checking) or to see if something can be improved (such as delay
reduction for aircraft taxiing) without being very clear about the performance norm
to be achieved. In other cases, requirements may be operationalized into a testable
norm (such as having an execution time of less than 7.7 ms).

6.5 Summary

• Requirements are treatment goals. They are desired by some stakeholder who has
committed a budget to realize them.

• Requirements are specified by the design researcher. To justify requirements,
there should be a contribution argument of the form

(Artifact Requirements) � (Context Assumptions) contributes to (Stakeholder Goal).

• Requirements can be classified in many ways. One classification is the distinction
between functional and nonfunctional requirements:

– To make a nonfunctional property measurable, it must be operationalized by
indicators.

– To make a nonfunctional requirement measurable, it must be operationalized
by indicators and norms.

– Sometimes a norm is crisp, but often it just indicates the direction of
improvement.

Notes

4 Page 52, the contribution argument. The concept of a contribution argument corresponds
closely to the concept of a satisfaction argument introduced by Jackson [5]. Satisfaction arguments
are part of Jackson’s problem-solving approach to software engineering using problem frames [6].
A brief explanation with formalization is given by Gunter et al. [2], and a philosophical argument
that this is one of the core achievements of software engineering is given by Hall and Rapanotti [3].
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Chapter 7
Treatment Validation

To validate a treatment is to justify that it would contribute to stakeholder goals
when implemented in the problem context. If the requirements for the treatment
are specified and justified, then we can we validate a treatment by showing that it
satisfies its requirements. The central problem of treatment validation is that no real-
world implementation is available to investigate whether the treatment contributes
to stakeholder goals. Still, we want to predict what will happen if the treatment is
implemented. This problem is explained in Sect. 7.1. To solve it, design researchers
build validation models of the artifact in context, and investigate these models
(Sect. 7.2). Based on these modeling studies, researchers develop a design theory of
the artifact in context, and use this theory to predict the effects of an implemented
artifact in the real world (Sect. 7.3). We review some of the research methods to
develop and test design theories in Sect. 7.4. These methods play a role in the
process of scaling up an artifact from the idealized conditions of the laboratory
to the real-world conditions of practice. This is explained in Sect. 7.5.

7.1 The Validation Research Goal

The goal of validation research is to develop a design theory of an artifact in context
that allows us to predict what would happen if the artifact were transferred to its
intended problem context (Fig. 7.1). For this, it is essential that the design theory
can be used for prediction. Explanation is desirable too, but not essential.

The core validation research questions have been treated in Chap. 2 and are
repeated in Table 7.1.

The central problem of validation research is that it is done before implementa-
tion. The artifact is not interacting with any problem context yet and perhaps never
will. A realistic implementation does not even exist. So what is there to investigate?
In design science research, we use validation models to simulate implementations.

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__7
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Fig. 7.1 The place of treatment validation in the engineering cycle

Table 7.1 Four important kinds of knowledge questions in validation research. Repeated from
Table 2.4

Effect questions: (artifact � context) produce Effects?

• What effects are produced by the interaction between the artifact and context?
• How does the artifact respond to stimuli?
• What performance does it have in this context? (Different variables)

Trade-off questions: (alternative artifact � context) produce effects?

• What effects do similar artifacts have in this context?
• How does the artifact perform in this context compared to similar artifacts?
• How do different versions of the same artifact perform in this context?

Sensitivity questions: (artifact � alternative context) produce Effects?

• What effects are produced by the artifact in different contexts?
• What happens if the context becomes bigger/smaller?
• What assumptions does the design of the artifact make about its context?

Requirements satisfaction questions: do effects satisfy requirements?

• Does the stimulus-response behavior satisfy functional requirements?
• Does the performance satisfy nonfunctional requirements?

For example, we study a prototype of an artifact, interacting with a model of the
intended problem context, to develop a design theory about the interaction between
the artifact and a context.

We can do this even if implementations already exist. For example, after an effort
estimation technique is implemented and is used in real-world projects, we may
continue to validate it by testing its accuracy in student projects in the laboratory.
It is therefore not entirely accurate to say that validation research is done before
implementation. We can even study existing implementations by studying validation
models that represent existing real-world implementations. The central problem of
validation research exists by definition: In validation research, we want to study the
interaction between an artifact and its context by studying a model of it.
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7.2 Validation Models

The word “model” is overloaded, and in this book we use it in one of its many
meanings, namely, that of an analogic model. An analogic model is an entity that
represents entities of interest, called its targets, in such a way that questions about
the target can be answered by studying the model. Henceforth, unless otherwise
stated, the term “model” always refers to analogic models.5

Examples of models in science are the use of an electrical network as a model
of a network of water pipes, the use of water waves as a model of light waves,
and the double-helix model of DNA, among others. Models are used in science to
make complex phenomena understandable and to reduce the cost of investigating the
phenomena. In engineering, scale models are routinely used to simulate the behavior
of artifacts under controlled circumstances. And in drug research, animals are used
as natural models of human beings to test the effect of drugs [16].

A validation model consists of model of the artifact interacting with a model
of the problem context (Fig. 7.2). The targets of a validation model are all possible
artifact implementations interacting with real-world problem contexts.

There is a wide variety of models that are used for validation purposes in software
engineering and information systems research. To simulate aspects of software sys-
tems, we can use executable specifications, Matlab simulations, software prototypes,
or user interface mock-ups, and we can even do a role-play in which people act
as software components. To simulate the interaction between an IT artifact and its
context, we can use students or real-world stakeholders, who we ask to perform
tasks in a simulated environment in the laboratory. In technical action research, as
we will see later, we investigate the effect of a new technique by applying it to a
real-world case that is used as model for other real-world cases.

All of these uses of models are based on a relevant similarity between the model
and its target, which is used to generalize by analogy from observations of the model
to properties of its target. Reasoning by analogy is discussed further in Chap. 15:

� In a project to design a new goal-oriented enterprise architecture (EA) design method that we
will call EA, the researcher performed two validations, using two validation models [3]. In the first
validation, he used the method himself to design a new EA for a client. In this study, the model

Model of 
ar�fact

Model of 
context

Implemented 
ar�fact

Intended 
context

Similarity

TargetValida�on model

Fig. 7.2 A validation model represents its targets by similarity. It is used to answer questions about its
targets
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of the artifact was the then current description of the method. The model of the intended problem
context was the client and the small EA project performed by the researcher for the client.

In the second validation, the researcher taught the method to architects in another client
company, after which they used it to redesign the EA of their organization. In this study, the model
of the artifact was the description of the method used by the architects. The model of the context
was the client organization who performed the EA project.

� In the DLC project, the researcher presented a prototype of the newly designed data location
compliance auditing method, in the form of a number of slides and a text on paper, to a panel of
consultants, who gave their opinion about the usability and utility of the method. Each consultant
constructed a validation model in their head, consisting of an imagined problem context in which
they applied the prototype of the method. The targets of these partly imagined validation models
are all real-world uses of the method for data location compliance assessment, independently from
the designer of the method.

� In the DOA project, two kinds of validation studies were done. In the first validation, the
validation models were Matlab simulations of algorithms to estimate direction of arrival and Matlab
simulations of the context. In the second validation, the artifact was prototyped in a particular
version of C, and the various contexts were simulated in the same programming language.

7.3 Design Theories

The goal of validation is to build a theory of the implemented artifact in a real-
world context, based on study of validation models. Once we have a theory that
has successfully survived tests and criticism, we use it to make predictions. We will
discuss the structure and function of scientific theories in more detail later and here
repeat the crash course given earlier, in slightly different words:

• A scientific theory is a belief about a pattern in phenomena that has survived
testing against empirical facts and critical reviews by peers. This survival does
not imply that the theory is final or even that it is completely true. Any scientific
theory is fallible and may be improved in the future.

• A scientific theory contains a conceptual framework that can be used to frame a
research problem, describe and analyze phenomena, and generalize about them.

• A scientific theory also contains generalizations about patterns in phenomena
that may be usable to explain the causes, mechanisms, or reasons of phenomena.
This in turn may be useful to predict phenomena or to justify artifact designs.
Not each generalization may be usable for each of these purposes.

In validation research, we develop design theories, which are theories of the
interaction between an artifact and its intended problem context:

� The conceptual framework of the design theory in the EA project is the conceptual framework
of the artifact, the ARMOR method. This framework defines concepts such as goal, stakeholder,
requirement, etc. The generalization of the design theory is that the steps of the ARMOR method
are sufficient to create an enterprise architecture that links architecture components to the relevant
business goals. This is a kind of functional correctness. The generalization predicts what will
happen if the ARMOR method is used and explains the expected result in terms of the steps
of the method.
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The greatest threat to this design theory is that it may be true of simple EA projects performed
under controlled conditions but may be false of complex projects performed under conditions of
practice. In other words, the major goal of validation research is to check whether the theory holds
under conditions of practice.

� In the DOA project, the artifacts being investigated are algorithms to estimate direction of arrival.
The conceptual framework of the design theory of these artifacts contains concepts from matrix
calculus, linear algebra, and signaling theory. The conceptual framework of the DOA design
theory is used to specify the design of estimation algorithms and to analyze their properties.
The conceptual framework is also used to describe measurements of the performance of the
algorithms.

The major generalization is about functional correctness: When used in the proper context
(plane waves, narrow bandwidth, etc.), the algorithms produce an accurate estimate of the direction
of arrival of plane waves.

For one particular algorithm, called MUSIC, more research was done. A generalization about
MUSIC is that DOA is recognized up to an accuracy of 1 degree and within 7.7 ms execution
time. Additional generalizations were found too, such as that increasing the number of antennas
in an array produces a higher spatial resolution [14, page 24] and that a particular set of nested
loops caused performance degradation under certain conditions [14, page 59]. Some of these
generalizations can be used to predict performance of the algorithm in the real world. Some can
be used to explain the behavior of the algorithm or to improve the design of the systems in which
the DOA algorithm was used.

7.4 Research Methods

There are many methods to study validation models, and some lists of methods have
been published, for example, by Zelkowitz and Wallace [17] and by Glass et al. [4].
Closer inspection reveals that these lists can be reduced to the list of methods below
and the measurement techniques and data analysis techniques discussed later [15].6

Most of the methods discussed below are explained in more detail later, in Part V.

7.4.1 Expert Opinion

The simplest way to validate an artifact is by expert opinion. The design of an
artifact is submitted to a panel of experts, who imagine how such an artifact will
interact with problem contexts imagined by them and then predict what effects they
think this would have. If the predicted effects do not satisfy requirements, this is a
reason to redesign the artifact. This approach to validation is very similar to code
inspections, where a number of software engineers read code produced by someone
else in order to find any bugs. An example is the DLC project, in which experts were
asked to give their opinion about a data location compliance auditing method.

Note that the goal of expert opinion is not to give a survey of all opinions of all
experts. Rather, the experts are used as instruments to “observe,” by imagining, a
validation model of the artifact. The model exists in the imagination of the experts.
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Validation by expert opinion only works if the experts understand the artifact,
imagine realistic problem contexts, and make reliable predictions about the effects
of the artifact in context. Positive opinions may indicate socially desirable remarks,
or they may indicate that the experts cannot imagine why this artifact would not
work in practice. To rule this out, you have to ask the experts to explain their
predictions in terms of the mechanisms that they think will produce the effects.

Negative opinions are more useful than positive opinions, because they give early
indications of improvement opportunities for the artifact. Negative opinions can
indicate conditions of practice not thought of by the researcher. Expert opinion is
useful to weed out bad design ideas early.

We will not further discuss the use of expert opinion in this book. It is similar
to the use of focus groups in requirements engineering, explained by, for example,
Alexander [1] and Lauesen [10].

7.4.2 Single-Case Mechanism Experiments

A single-case mechanism experiment in validation research is a test in which the
researcher applies stimuli to a validation model and explains the response in terms
of mechanisms internal to the model. For example, you build a prototype of a
program, build a model of its intended context, and feed its test scenarios to observe
its responses. The responses, good or bad, are explained in terms of the mechanisms
internal to the program or to the environment.

Single-case mechanism experiments are useful for validation research, because
they allow us to expose the model to controlled stimuli and analyze in detail
which mechanisms are responsible for the responses. Depending on the realism
of the model, we may study the effects of mechanisms in the artifact as well as
mechanism in the context and their interaction. Single-case mechanism experiments
are discussed in Chap. 18. They are not restricted to testing software, as illustrated
by the second example below:

� In the MARP project, the planning algorithms were tested in a simulation of an extremely busy day
on Schiphol airport. The validation model consisted of a set of agents using MARP in a simulation
of Schiphol airport. The model showed a reduction of delays with respect to the fixed planning
algorithms used currently at the airport. By contrast, simulations on arbitrary road networks with
random arrival and destination points showed very large delays. These phenomena were explained
in terms of the behavior of the agents that were using MARP, as well as of the architecture of
Schiphol airport compared to that of random route networks.

� Land et al. [9] proposed and validated a mechanism for code inspections, called procedural roles.
In code inspection, inspectors first search for defects in code individually and then meet to discuss
findings. Defects found individually may be lost in the group meeting. Land et al. explained this
phenomenon using theories from social dynamics and then proposed a meeting format in which
inspectors play procedural roles. This format was tested in two mechanism experiments with
students. The validation model consisted of an artifact model (a preliminary description of the
inspection process using procedural roles) and a model of the context (the students and the code
to be inspected). As predicted, less defects were lost in the group meeting when procedural roles
were used. Note that in this example, one of the relevant mechanisms is the method being tested.
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7.4.3 Technical Action Research

Technical action research (TAR) is the use of an artifact prototype in a real-world
problem to help a client and to learn from this. Usually this is one of the last stages
in scaling up a technology from the laboratory to the real world. For example, a
cruise control algorithm can first be tested in a simulated car, next in a real car on
a test drive, and finally in a real car used by a volunteer in his daily commuting to
work. This last test would be technical action research.

Technical action research is really a special case of a single-case mechanism
experiment, because single validation models are tested and the results are explained
in terms of mechanisms. The validation model in TAR consists of a realistic version
of the artifact interacting with a real-world context. The difference with other single-
case mechanism experiments is that in addition to investigating the responses of the
validation model to stimuli, the researcher also uses the artifact to help a client.
This gives TAR a special structure, different from all other single-case mechanism
experiments. It is discussed in Chap. 19:

� The conceptual framework developed in the ARE project was taught to a project manager of a
small software engineering project, managed in an agile way. The manager used it to structure
project tasks, specify requirements, manage their alignment with business goals, and decide on
priorities for each next agile iteration. This process was observed by the researcher and used to
validate the usability of the conceptual framework in practice.

7.4.4 Statistical Difference-Making Experiments

Statistical difference-making experiments compare the average outcome of treat-
ments applied to samples. They can be used in validation research by selecting
samples of validation models and comparing the average outcome of treatments
in different samples.

The advantage of statistical difference-making experiments for validation
research is that they do not require full understanding of the mechanisms that
produce responses. The disadvantage is that conditions are very hard to control
completely, even in validation models, and that it may be difficult to attribute an
observed difference to a difference in treatments or to a difference in groups or to
some other difference. Statistical difference-making experiments are discussed in
Chap. 20:

� Prechelt et al. [13] investigated the use of the so-called pattern comment lines (PCLs) to enhance
the understanding of the use of patterns by programmers. PCLs describe pattern usage in a
few comment lines, where applicable. A treatment group consisting of students performed some
maintenance on programs containing PCLs in the classroom, and the control group performed the
same maintenance tasks on the same programs minus the PLCs.

The artifact studied was the PCL, and the context with which it interacted was a student
maintaining a program in the classroom. The maintenance assignments performed by the students
were the treatments. All groups received the same treatments, and the goal was to find out if there
is a difference between the groups using PCLs and the groups not using PCLs.
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A statistically discernable difference was found: Programs containing PCLs took less effort to
maintain. This difference was explained by a theory of program comprehension that postulates
some cognitive mechanisms used by programmers to understand programs. The explanation of
the difference in effort is that PCLs trigger these mechanisms so that it is easier to understand a
program.

7.5 Scaling Up to Stable Regularities and Robust
Mechanisms

New technology is always developed by designing and testing it under idealized
laboratory conditions first, incrementally scaling this up to conditions of practice
later. In this scaling up approach, we follow two lines of reasoning, illustrated in
Fig. 7.3.

Along the horizontal dimension, our research goal is to test an increasingly
realistic model of the artifact under increasingly realistic conditions of practice. We
reason by analogy from the investigated model to real-world cases. This is case-
based inference.

We will see that case-based inference gains plausibility if it is based on similarity
of architecture. The reasoning is then that if a stimulus of a validation model triggers
an interaction among architectural components of the model, which has an effect,
then this mechanism will also occur in real-world implementations with a similar
architecture, with a similar effect.
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Fig. 7.3 Scaling up to stable mechanisms under conditions of practice, by investigating validation
models using different research methods
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Along the vertical dimension, our research goal is to show that an effect exists
on the average in a population. If all artifact implementations would be identical
and if they would operate in identical contexts, then this research goal would
be superfluous. In the real world, though, artifact implementations and contexts
differ, and there is nondeterminism. We use statistical research to average out
this nondeterminism by observing average outcomes in samples and to make
plausible that this average effect also exists in the population. This is sample-based
inference. In it, we reason from samples to a population.

Sample-based inference is statistical inference and is based on random sampling
and allocation of treatments. We do not have to rely on knowledge of the mecha-
nisms that produce different responses. Even if we have this knowledge, we cannot
use it in statistical inference.

How can these strategies be combined? By designing different experiments
with different validation models. We can start by filtering out bad designs by
submitting our design to expert opinion. We can perform single-case mechanism
experiments on single validation models under idealized laboratory conditions to
increase our understanding of the mechanisms that produce responses. We can scale
up to conditions of practice to test whether the mechanisms are robust. We can
study the response of samples of validation models to average out nondeterministic
behavior and identify stable effects on the average. Finally, we can test our artifact
under conditions of practice by doing technical action research. Gorschek et al. [6]
describe such a process of scaling up. We will look closer at this process in Chap. 16.

7.6 Summary

• In treatment validation, we develop a design theory of the interactions between
the artifact and its context.

• Important validation research questions are what the effects of the interaction
are and whether these satisfy requirements. Trade-off questions test the gener-
alizability over different versions of the artifact; sensitivity questions test the
generalizability over differences in context.

• Since we cannot, by definition, validate real-world implementations, we inves-
tigate validation models. A validation model consists of a model of the artifact
interacting with a model of the context.

• Research methods to investigate validation models include expert opinion,
single-case mechanism experiments, technical action research, and statistical
difference-making experiments:

– Expert opinion can be used to weed out bad designs early.
– Statistical difference-making experiments can be used to provide empirical

support for the existence of stable population-level average effects.
– Single-case mechanism experiments and technical action research can be used

to investigate the mechanisms that produce these effects.
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Table 7.2 Validation methods identified by Zelkowitz and Wallace [17] and by Glass et al. [5]

This book Zelkowitz and Wallace [17] Glass et al. [5]

Validation research methods

� Expert opinion

� Single-case
mechanism
experiment

� Simulation
� Dynamic analysis

� Field experiment
� Laboratory

experiment—
Software

� Simulation

� Technical action research � Case study � Action research

� Statistical
difference-making
experiment

� Replicated experiment
� Synthetic environment

experiment

� Field experiment
� Laboratory

experiment—
human subjects

Other research methods

� Observational case study � Case study
� Field study

� Case study
� Field study

� Meta-research method � Literature search � Literature review/analysis

Measurement methods

� Methods to collect data � Project monitoring
� Legacy data

� Ethnography

Inference techniques

� Techniques to infer informa-
tion from data

� Static analysis
� Lessons learned

� Data analysis
� Grounded theory
� Hermeneutics
� Protocol analysis

Notes

5Page 61, analogic models. This is based on a definition by Apostel [2] and one by Kaplan [8,
p. 263]. It is very similar to the concept of a model in software engineering used by Jackson [7].
Müller [12] recounts an insightful history of the concept of a model, in which he identifies
many different relevant meanings of the term. Morrison and Morgan [11] review the many
different functions models can have. The function of validation models is to simulate and represent
implementations.

6Page 63, validation research methods. Table 7.2 compares the different classifications. The
table shows that Zelkowitc and Wallace and Glass et al. also list other research methods that are
useful for implementation evaluation and problem investigation but cannot be used for investigating
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validation models. They additionally include measurement methods and inference techniques that
can be combined with various research methods, as will be shown later in this book. I discuss this
comparison in more detail elsewhere [15].
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Chapter 8
Conceptual Frameworks

When we design and investigate an artifact in context, we need a conceptual
framework to define structures in the artifact and its context. In Sect. 8.1, we look
at two different kinds of conceptual structures, namely, architectural and statistical
structures. In information systems and software engineering research, the context
of the artifact often contains people, and researchers usually share concepts with
them. This creates a reflective conceptual structure that is typical of social research,
discussed in Sect. 8.2. Conceptual frameworks are tools for the mind, and the
functions of conceptual frameworks are discussed in Sect. 8.3. In order to measure
constructs, we have to operationalize them. This is subject to the requirements of
construct validity, discussed in Sect. 8.4.

8.1 Conceptual Structures

A conceptual framework is a set of definitions of concepts, often called con-
structs. The constructs are used to define the structure of an artifact and its context,
to describe phenomena in the artifact and context, to formulate questions about these
phenomena, to state generalizations, etc. The structure of a conceptual framework
can be analyzed in itself, without doing empirical observations, by mathematical
or conceptual analysis. Conceptual frameworks are an important part of scientific
theories.

Table 8.1 lists and illustrates a number of conceptual structures frequently
encountered in design science. These structures are familiar from conceptual
modeling and ontologies, and I will not give precise definitions of them here. More
about them can be found in the relevant literature [3, 13, 19, 20, 30, 31].

The table shows two overlapping but different kinds of conceptual structures:

• In architectural structures, the world is a hierarchy of interacting systems. Each
system is an entity that can be decomposed into components that interact to

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__8
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Table 8.1 Examples of conceptual structures found in conceptual frameworks. The list is not
exhaustive

� Entities

– Wave, wave source, antenna, beam-
forming system

– Cloud service provider, client, auditor

� Events

– Arrival of an aircraft, incident, depar-
ture

– Sprint deadline

� Composition relations

– Decomposition of beamforming sys-
tem

– Enterprise architecture decomposition

� Processes

– Trip from arrival to departure point
– Sprint in a development process

� Procedure specifications

– Audit method specification
– ARMOR method specification

� Constraints

– EU privacy regulation
– Constraints on a route plan

� Taxonomic relations

– Taxonomy of antennas
– Taxonomy of different kinds of project

risks

� Cardinality relations

– Each location in a road network is
connected to at least one road

– Cloud service provider uses more than
one cloud server

� Variables

– Frequency, distance, angle of arrival
– Compliance
– Usability, effort, goal

� Probability distributions

– The failure probability of a project
– Correlation between failure and size of

a project

� Populations

– The population of ERP systems
– The population of software engineering

projects.

produce overall system behavior. Components too may be systems of lower-level
components. Conversely, components can be composed into composite systems.
One possible research goal is to predict or explain overall system behavior from
knowledge of its architecture. Another possible research goal is to discover a
system’s architecture from observations of its behavior.

• In statistical structures, the world is a collection of phenomena that can be
described by variables. The values of a variable have a probability distribution
over the set of all possible phenomena. One possible research goal is to predict or
explain phenomena from knowledge of the probability distribution of variables.
Another possible research goal is to estimate properties of the probability
distribution of variables from observations of samples of phenomena.

The common element in both kinds of structures is the concept of a variable. In an
architectural structure, variables are properties of systems or of their interactions.
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In a statistical structure, they are aspects of phenomena with a probability distribu-
tion. One conceptual framework can define both kinds of structures.

The distinction between these two kinds of structures is a core element in the
rest of the book. Architectural structures support case-based research, in which
we investigate individual cases, study their architecture, identify mechanisms by
which overall system-level phenomena are produced, and generalize case by case.
Statistical structures support sample-based research, in which we infer properties
of the distribution of a variable over a population of phenomena, by observing
the variable in a sample of the population. Case-based and sample-based research
should deliver mutually consistent results, because they are about the same real
world. But research design and inference differ for the two kinds of research:

� For example, we can define the variable data location compliance for the cloud service offered by
a provider. This is a property of the interaction between one system (a cloud service provider) and
another system (a client). We can investigate how the cloud service provider organized this service.
Which organizational components play a role, by which processes? What software components
play a role, and how is this coordinated? This is an architectural analysis because we study
components and their interactions.
From a sample of observations of the variable across a population of services delivered by one
provider, we can try to derive information about the distribution of the variable over this population.
What percentage of services in this population is judged compliant? This is a statistical analysis
because we are trying to discover a property of the distribution of a variable.
Both analyses, if done properly, should deliver mutually consistent information. For example, the
statistical analysis can provide information about the effectiveness of the mechanisms by which
compliance is realized.

8.1.1 Architectural Structures

A system is a collection of elements that interact and form a whole. The systems
concept is very general and applies to software systems, physical systems, social
systems, and even symbolic systems such as the law, a development method, or
a notation. What makes all these entities systems is that the organization of their
components produces overall properties of the system. A collection of elements
forms a system by virtue of their organization.

Almost all of the conceptual structures of Table 8.1 are actually systemic
structures: Systems are entities that can be decomposed into components that
perform processes to respond to events. Systems and components can be classified
in taxonomies and have cardinality relations with each other [31]. Systems can
behave nondeterministically according to a probability distribution. We next discuss
the concepts of an architecture, component, and mechanism.
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Architecture

A system architecture is the organization of the system’s components that produces
overall system behavior.1 The central idea is that an architecture is responsible for
some system-level phenomena. If we throw all components of a car on a heap, the
heap will not behave as a car. If we put them together according to the architecture
specified by its designers, we get a system that behaves as a car. The difference is
made by the architecture.

Components

An architecture consists of components that interact to produce system behavior.
The components of an architecture are defined by their capabilities and limitations.

A capability is an ability to respond to stimuli, to changes in conditions, or to
temporal events such as deadlines or periodic events [31]. If we designed and built
a component in order to realize some capability, then usually this component has
additional capabilities, not known to us:

� For example, a software component that is constructed to realize some stimulus-response behavior
may respond in unexpected ways to stimuli for which no response was specified. It may crash, or
it may show interesting behavior.

� And an employee, which is a human component of an organization, may perform some job role,
which is a specified capability. But people have more competencies than those specified in a job
role, and the employee may respond intelligently to many situations not specified in the job role.

At the same time, components have limitations. They may fail, respond incorrectly,
or reach the boundary of their performance capabilities. To say that a component
has capabilities is equivalent to saying that it has limitations. We will sometimes
talk about capabilities and limitations, capabilities/limitations, plain limitations, or
simply capabilities. All of these phrases mean the same thing in this book.

Mechanisms

When a system receives a stimulus, a pattern of interaction among system com-
ponents is produced that leads to system responses. This is called a mechanism.
There are software mechanisms and hardware mechanisms but also cognitive
mechanisms that produce understanding in human beings and social mechanisms
that produce phenomena in social systems. Mechanisms in hardware and soft-
ware may be deterministic, but social and psychological mechanisms are always
nondeterministic. Nondeterministic mechanisms produce different responses with
different probabilities.

By what mechanisms a system produces responses depends on the system
architecture and the capabilities and limitations of its components. If we change
a system’s architecture, this may change the mechanisms by which responses are
produced, and hence it may change the capabilities of the system as whole. If
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we preserve a system’s architecture but replace some components by others with
different capabilities, then this too may change the mechanisms by which responses
are produced and hence the capabilities of the system as a whole. Here are some
examples:

� In the DLC problem, the cloud service provision market is a system, containing providers, clients,
auditors, and governments as components. Each of these has characteristic capabilities, such
as the ability to offer cloud storage services, the ability to pay for these services, the ability to
audit them, etc. The number of components is dynamic, because actors can enter and exit the
market. The properties of this market change if some components change their capabilities or if
the architecture of the market is changed.
Figure 8.1 represents the architecture of the cloud service provision market and some interactions.
The European Union is an individual component of the system, and the other rectangles represent
types of components.
Some mechanisms in the system are the processes by which clients and providers find each other
and do business, the mechanism by which governments issue regulations, and the processes by
which auditors check compliance. All of these mechanisms are nondeterministic. This produces
system-level phenomena such as the total flow of goods and services through a market, the
formation of networks of suppliers and clients, and the compliance-producing and compliance-
checking behavior.

� Any development project is a system containing actors, a software system, and software
engineering artifacts as components (Fig. 8.2) [27]. Social mechanisms among actors produce
project-level behavior. The interaction between the software engineering artifacts and software
engineers may trigger cognitive mechanisms in the actors and may create social mechanisms by
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Fig. 8.3 Conceptual model used to define multicomponent defects by Li et al. [14]. To fix a parent
defect, children defects need to be fixed too. Defects have a location, and they are fixed in a
development phase for a particular release

which the actors interact. All of these mechanisms, and more, are nondeterministic and can be the
object of empirical study.

� Li et al. [14] studied multicomponent defects and architectural hotspots in a large software system.
This topic had not been studied before, and in order to describe important phenomena, the authors
defined the concepts of multicomponent defect and of architectural hotspot.
The case being studied is a long-running development project of a large software system. This
case is itself a (sociotechnical) system. Some components of the case are shown in the entity-
relationship diagram of Fig. 8.3. The components have capabilities. For example, a defect can
break the behavior of a software component. Stimuli may trigger mechanisms. For example, the
repair of one defect may trigger the repair of another defect. Thus, the conceptual model of Fig. 8.3
allows us to describe important phenomena in the project.

Architectures are useful structuring mechanisms for design researchers both when
designing artifacts and when doing empirical research. First, architecture is used
in design to decompose a complex design problem in simpler subproblems, solve
these subproblems, and compose the entire system from components that solve
subproblems. Second, if a system architecture is known, designers can use it to
trace undesirable behavior of a system to that of one or more components and try to
repair the system by replacing some components with others that have capabilities
more suitable for the production of desirable system behavior. Third, designers can
explore design options for a system by experimenting with alternative components,
with different capabilities, and with different ways of organizing them in order to
produce desirable overall system behavior.

Architectures are used in empirical research too. First, a major aim of empirical
science is to discover the architecture of the system of nature [1, 5, 15, 29]. Second,
in order to reduce complexity, a researcher can study one component of an artifact
or its context at a time in order to understand its capabilities in detail and ignore the
rest. Third, just as an engineer, a researcher can abstract from the internal structure
of system components and try to explain system phenomena in terms of component
capabilities and the architecture of the system.

The investigation of architectures is always case-based research. We observe,
analyze, and experiment with the architecture of single cases and then generalize by
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analogy to cases with a similar architecture. More on this in Chap. 15. The examples
given above illustrate that this may be combined with statistical research, discussed
next.

8.1.2 Statistical Structures

In statistical structures, we omit all structures listed in Table 8.1 except variables,
probability distributions, and populations. A statistical structure is a population
of elements and one or more variables with a probability distribution over the
population. We first discuss populations and then variables and distributions.

Populations

A population is a set of all objects that satisfy some predicate and that are
possible objects of study for a researcher. The researcher usually does not study a
population as a whole, but a subset called a sample, and uses sample observations
to statistically infer properties of the population:

� A researcher may be interested in the population of all ERP (enterprise resource planning)
systems, all software engineers, all software development projects, etc. Any of these population
is too large to study as a whole, and the researcher studies instead a sample of ERP systems
used in a few companies, a sample of software development projects, etc. From the sample data,
the researcher will infer population properties.

Looking at a sample only, we cannot know from which population it was drawn. In
order to draw an inference from the sample to the population, we need to know
from which population the sample has been selected and how it was selected.
Without such a specification, we cannot do statistical inference from the sample
to the population:

� Given a set of distributed software projects in the insurance business, we could guess that it
was drawn from the population of all software projects, of all distributed software projects, of all
software projects done in the insurance business, etc. In order to use the sample to statistically
infer properties of a population, we must know from which population it was selected and how it
was selected, for example, by simple random sampling.

All population elements are similar in some respects, and this similarity is expressed
in a population predicate. The population predicate should make clear what counts
as a population element, in more than one sense of this phrase [31, p. 98]:

• How do we recognize a population element when we see one?
• How do we count population elements?

There is a deep connection between counting and classification [32]: If we change
a population definition, we may change the way we recognize and count population
elements.
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A population predicate can be surprisingly hard to define, even for concepts that
we think we know well:

� For example, how do we recognize an agile project? When do they follow a method generally
accepted as agile? Many projects follow a method only partially. And when is a method “generally
accepted” as agile? What about unknown agile methods?

� How do we count agile projects? Is a global project that is agile at two of its three locations one or
two projects? What if a project at one location delivers two systems? What if it is terminated and
taken over by another company? What if the project follows one agile method first and another one
later?

In sample-based research, we need a clear definition of the population to sample
from. If this is not possible to give, we simply define a list of population elements
called a sampling frame. Sampling then consists of selecting elements from this
list, and statistical inference allows us to draw conclusions about the population
described by the sampling frame.

In case-based research, we have populations too, but they need not be defined
as crisply as populations in sample-based research. We will see that in case-based
research, we select cases by (dis)similarity and that we study them one by one.
Part of the research goal may be to discover more about the relevant similarity
relation among population elements, which allows us to improve our definition of
the population predicate.

Random Variables

Any construct that can be measured is a variable. Examples are wave frequency,
data location compliance, and project effort. Mathematically, we speak of a
random variable, defined as a mapping from observations to a set of numbers.
In information systems and software engineering research, random variables are
usually defined in terms of a population:

� We can define the variable project effort for a population of software projects as the time, in person-
hours, that has been spent on a project so far. Whenever we measure the effort of a project, we
get a value of this variable for this project.

The definition of a random variable over a population is called a chance model of
the variable. We can visualize a chance model of a random variable X as a box filled
with tickets, where each ticket has a number written on it, which is a measurement of
X in a population element [7]. Different tickets may have the same number written
on them. The numbers on the tickets have a probability distribution. Measurement
is drawing a sample of tickets from the box.

A probability distribution of a random variable is a mathematical function
that summarizes the probability of selecting a sample of values in a random
draw from the X -box. To make this precise, mathematics is needed [28]. Here,
it suffices to say that if X is discrete, the probability distribution gives for each
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Table 8.2 Elements of a chance model for a random variable

1. What is the meaning of the numbers on the tickets? You define this as part of the
conceptual framework of your research

2. What is assumed about the probability distribution of the numbers over the tickets in
the box? For example, how many tickets (population elements) are there? What do we
assume about the functional form of the distribution of numbers on the tickets? These
assumptions are specified as part of the population definition

3. How are the numbers measured? This is part of measurement design
4. When sampling, how many tickets are drawn from the box? Are they drawn randomly?

With or without replacement? This is part of sampling design

value of X the probability of selecting that value in a random draw from the
X -box. If X is continuous, the probability of drawing any particular value is 0.
The probability distribution of a continuous variable summarizes something else,
namely, the probability of selecting a range of values in a random draw from the
X -box. Mathematicians speak of selecting a sample from a distribution. Empirical
researchers usually speak of selecting a sample from a population. In both cases, we
can visualize this as a selection of a sample from a box of tickets.

A chance model for X is defined by answering the questions listed in Table 8.2.
Here are two examples of chance models. Because we want to define chance models
over a population, we include the definition of the population as the zeroth part of
the definition of the chance model:

� Huynh and Miller [11] investigated implementation vulnerabilities of open-source web applica-
tions.

0. The population is the set of all open-source web applications.

One random variable defined over this population is ImpV, which stands for implementation
vulnerabilities. The chance model of ImpV is this:

1. The numbers on the tickets are proportions of implementation vulnerabilities among total
number of vulnerabilities in a web application.

2. The numbers have the probability distribution binomial.n; p/ where n is the number of
vulnerabilities in a web application and p the probability that a vulnerability is an implementation
vulnerability. Binomial.n; p/ is the distribution of the number of successes in a series of n

independent Bernoulli experiments with fixed probability p of success. A Bernoulli experiment
is an experiment with two possible outcomes, arbitrarily called “success” and “failure.” The
assumptions made here are that the proportions of implementation vulnerabilities in different
web applications are independent and that the probability that a vulnerability is an implementa-
tion vulnerability is constant across all web applications.

3. ImpV is measured by counting and classifying the vulnerabilities in a web application. The
paper does not reveal who did the counting and classifying.

4. Huynh and Miller selected a sample of twenty applications to do their measurements. The paper
explicitly lists all twenty applications but does not reveal how they were selected.

� Hildebrand et al. [9] investigated the effect of feedback from a social network on the creativity
by which a consumer customized a mass-customizable product and on the satisfaction of the
consumer with the final product:
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0. The population is the set of all consumers who design a product by selecting options in a web
interface.

One random variable defined over this population is Pref�ij, the difference between the preference
of a consumer i and the preference of the social network member j who commented on the
consumer preference. Each consumer i received feedback from exactly one peer j . Pref�ij is
defined by a chance model as follows:

1. The numbers on the tickets are Euclidian distances between the initial choice of consumer i and
the feedback about the choice received from member j of a social network. Slightly simplified,
the numbers are computed by the distance measure

P
c

p
.�i;c � �j;c /2 � !i;c , where �i;c is the

preference of consumer i on attribute c, �j;c is the preference of social network member j about
attribute c, and !i;c is the importance of c to i , based on the proportion of the total price of the
product allocated to c.

2. Initially, nothing is assumed about the distribution of the numbers, except that they have a finite
population mean and standard deviation. Some of the statistical inferences used in the paper
assume that Pref�ij is distributed normally over the population.

3. The numbers are computed from measurements of selections by consumers on the web page
where they can customize the product.

4. Hildebrand et al. selected a sample of 149 consumers who customized a vehicle using a car
manufacturer’s web-based mass customization interface and received feedback on this from
another consumer.

Chance models contain simplifying assumptions, which are unavoidable in any
study. Is the proportion of implementation vulnerabilities independent from the type
of application and from the year the application was first developed? Is the response
to feedback from one person the same as the response to possibly contradictory
feedback from many people? If we would study the real world in its unconstrained
complexity, every phenomenon would be unique. To generalize is to simplify.

We can define chance models for more than one random variable. For two random
variables X and Y , we can define their X -box and Y -box, as well as their .X; Y /-
box. If there are dependencies between X and Y , then the .X; Y /-box contains more
information than just the Cartesian product between the X -box and the Y -box:

� Hildebrand et al. [9] define a number of random variables of consumers, such as own expertise
and self-expression. There may be dependencies between these variables, so their measurements
across all consumers in the population would be collected in an (own expertise, self-expression)
box.

Statistical structures are used in sample-based research to investigate properties of
the distribution of variables over a population. Statistical concepts such as mean and
variance are properties of samples and populations, but not of individual elements
of the population.

The results of sample-based research are useful for decision-makers who must
decide about large numbers of objects. For example, managers must decide whether
and, if so, how to invest in social network support for mass customization.
Politicians must decide on the allocation of public money to public infrastructures.
Project managers can use knowledge of the distribution of vulnerabilities to decide
which designs must be improved next.
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With repeated sampling from the same population, sample statistics may vary
around a mean with a small variance, even if the variance of individuals in a sample
is much larger. This can make phenomena visible at the sample level that were
invisible at the individual level. For empirical researchers, statistical structures
reveal a new layer of reality, not visible at the individual level. Even where the
behavior of an individual element may be nondeterministic, samples of elements
can show stable behavior in the long run.

8.1.3 Mixed Structures

Architectural and statistical frameworks can be mixed. For example, you follow up
a sample-based, statistical study with a few case studies. Here is an example:

� You can do a statistical survey of the use of role-based access control in organizations and follow
this up with an in-depth study of a few organizations from the survey. The survey would be statistical
and, if the sample would be random, would support statistical inference to the population. This
would be a sample-based generalization. The follow-up study would be case based and support
analogic inference to other cases. This would be a case-based generalization. If done properly, the
results of the studies should be mutually consistent and should enrich each other’s conclusions.

Importantly, the population in both studies is the same, but the target of generaliza-
tion is different. The target of sample-based inference is a statistical model of the
population, such as the mean and variance of a random variable over the population.
The target of a case-based inference is an architectural model of elements of the
population.

The next example is about statistical research inside a case study. Here, the
population of interest for the case-based generalization is different from the
population of interest for each statistical study inside a case:

� Bettenburg and Hassan [2] present two case studies of social interactions preceding and following
a software release. The case studies are about the development of the Eclipse system and of
the Mozilla Firefox system. The population of interest is the population of software development
projects, from which these two cases have been selected.
In each of the two case studies, data sources were the issue tracking and version control
repositories of the studied project. In each case study, the researchers analyzed discussions
stored in these repositories to find information about code churn, source code regions talked about,
patches, etc. They also analyzed issue reports in the 6 months following a release. Altogether, they
measured 23 random variables.
The samples selected in each case were the set of issues in the 6 months preceding and following
a release. The sample size for the Mozilla case was 300,000, and the sample size for the Eclipse
system was 977,716.
The information in each sample was used to estimate a linear equation that expressed post-release
defect probability in terms of a linear combination of the prerelease variables. Thus, in each case
study, the authors inferred a statistical model of the population of all issues in the issue tracking and
version control system of this case. As there are two case studies, there are two populations, and
there are two statistical models. The two populations are of course different from the population of
software projects.
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8.2 Sharing and Interpreting a Conceptual Framework

The conceptual framework of a scientific theory is used for communication between
researchers themselves. If the framework is standardized and available in textbooks,
a research report does not have to explain the constructs. If it is shared by only a few
researchers or if readers of a report may misinterpret constructs in the framework,
then a research report must contain definitions of the constructs.

But a conceptual framework may also be shared with people in the studied
domain. For example, the researcher may adopt and formalize concepts used by
people in the investigated domain, or conversely, people in the investigated domain
may adopt new constructs first defined by the researcher. This happens quite a lot in
information systems and software engineering research:

� In the DLC project, concepts of cloud computing and of the EU privacy regulation, used in the
domain, were adopted by the researcher. The researcher designed a method that uses some
of these concepts without modifications, so that people in the domain using the method could
understand them.

� In the ARE project, the researcher reviewed the literature on agile requirements engineering
and constructed a conceptual framework from domain concepts using a grounded theory
approach [21]. The resulting framework contains concepts such as business value, negative
value, requirements value, risk, and priority. The researcher then taught these concepts and the
associated way of working to a project manager, who used them in his project.

� Goal-oriented requirements engineering (GORE) methods used everyday concepts such as goal,
conflict, concern, and assessment and redefined them somewhat (Fig. 8.4). In the EA project, they
were then further redefined a bit and included in the ARMOR method [6]. When the architects in a
case study used ARMOR, these concepts were adopted by these architects. However, some of the
concepts in ARMOR had received a very specific meaning that does not agree with the way these
concepts are normally used in the domain, and these concepts were misunderstood, and misused,
by the architects.

� Most variables defined by Bettenburg and Hassan [2] were concepts used by the participants in the
discussions stored in the issue tracking system. Other concepts were not used in the domain but
were borrowed from social network theory, such as closeness and centrality, that were not used by
the discussion participants. And some concepts had to be operationalized in a way that may have
departed from the intended meaning in the domain. For example, interestingness was measured
by the length of the notification list of an issue. This is a very rough measure of the level of interest
that each of the members of the list may have had in the issue.

These examples illustrate a phenomenon that must be carefully managed by
researchers who study social phenomena: Researchers may study the conceptual
frameworks of subjects [23]. Doing this, they have to interpret concepts used by
subjects, and they may even adopt them. This produces an additional layer of
understanding that is not expressed in terms of causes or mechanisms but in terms
of first-person meaning for people in the domain [16].

Some methodologists treat this in an exclusionary way, for example, the influen-
tial nineteenth-century philosopher Dilthey:

mechanistic explanation[s] of nature explain only part of the contents of external real-
ity. This intelligible world of atoms, ether, vibrations, is only a calculated and highly
artificial abstraction from what is given in experience and lived experience (quoted by
Makkreel [16]).
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Fig. 8.4 The history of a concept. A concept can have many interpretations in the domain. It may be
reconstructed in various ways by researchers, to be used in different methods such as KAOS, BMM,
Tropos, and i*. A further reconstruction of the concept may be introduced in the domain, where it may
or may not be understood in its reconstructed way

My view is that each kind of understanding adds to other kinds of understanding.
The real world is complex and it does not help the progress of knowledge if we
disregard insights provided by causal, architectural, or rational explanations or
insights provided by first-person experience.

Concepts can be shared by people in the domain and may be shared between
researchers and subjects. But even though concepts are shared, we cannot assume
that they are shared by all people in the domain or that they are interpreted in the
same way. Different people may interpret the same concept differently, and some
concepts may be so ambiguous that one person interprets it in different ways at
the same time. In addition, the meaning of concepts may change over time. This
has three consequences for design researchers, corresponding to the three arrows in
Fig. 8.4:

• If your research goal is to learn which concepts are used by people in the domain
and how they interpret these concepts, you need methods for collecting and
analyzing data that help you to put aside for the moment your own interpretation
of these concepts, so that they do not influence your interpretation of the domain
concepts. We discuss some of these methods in Chap. 12.

• Regardless of your research goal, if a construct is not standardized and available
to your readers, you must define it in your research report and motivate the
definition. The motivation may include a review of the alternative definitions
of a construct currently used by researchers.

• If your research goal is to introduce an artifact in the domain, then you must
ensure that the conceptual framework required to use the artifact is understood
by the users. This is not only true for methods, which consists primarily of a
structured set of concepts, but also of hardware and software, which may require
that the user be aware of some special concepts.
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8.3 The Functions of Conceptual Frameworks

Conceptual frameworks are tools for the mind. What can they be used for? They
can be used to ask questions, describe observations, do measurements, interpret past
events, issue instructions, express opinions, give permissions, make plans, specify
artifacts, define methods, interpret specifications, etc. We here focus on the use of
concepts in designing treatments and investigating phenomena.

First of all, they can be used to frame design problems and knowledge problems.
In design problems, a conceptual framework can define the concepts needed to
identify stakeholders, state their goals, and specify requirements on a treatment. A
conceptual framework can also provide the concepts by which to specify a treatment
and talk about the architecture, components, capabilities, and mechanisms of an
artifact and of its context. In software engineering, this has been called a problem
framing [12].

In addition to framing a design problem, conceptual frameworks can be used
to frame a research problem. A conceptual framework can provide the language
in which to define a population, define variables, state knowledge questions, and
specify hypotheses. Defining a conceptual framework for the research problem is
part of the research problem investigation task in the research methods described
later in the book.

Once a problem is framed, we can use the concepts of a framework in design
to specify a treatment and in empirical research to describe phenomena and
generalize about them. Descriptions and generalizations can be case based or
sample based, as illustrated in Table 8.3.

Finally, a conceptual framework itself can be the subject of mathematical or
conceptual analysis. This is not strictly spoken a function of conceptual frameworks
but can provide greater computational and reasoning capability during empirical
research and hence enhances the functions of conceptual frameworks.

We now look at an extended example of the different uses of a conceptual
framework:

Table 8.3 Examples of case-based and sample-based descriptions and generalizations. It is not our
concern here whether these descriptions are true or false

Case description In this agile project performed for a small company, there is no
customer on-site

Case-oriented generalization In all agile projects performed for small companies, there is no
customer on-site

Sample description In our sample of agile companies performed for small compa-
nies, 86% of the projects have no customer on-site

Statistical generalization In the population of agile companies performed for small
companies, 86% ˙ 5% of the projects have no customer on-
site (95% confidence interval)
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� In the MARP problem [18], multi-agent planning algorithms were developed for planning aircraft
taxi routes on airports. Concepts from the fields of robot motion planning and multi-agent route
planning and algorithmics were used to specify and analyze MARP algorithms.
Examples of constructs introduced in the report are infrastructure (a set of intersection and
locations, connected by lanes) and resource graph (showing the connectivity between edges and
nodes in an infrastructure) [18, p. 32]. A plan is a consecutive sequence of plan steps through
adjacent resources, where each plan step is the occupation of a resource for a time interval by the
agent [18, p. 34]. The cost of a plan is the difference between planned start and planned finish
time [18, p. 35]. These concepts are defined formally.
Slightly less formal is the concept of robustness, which is the property of a plan to remain efficient
even after “moderate” revisions [18, p. 3]. The concept of a moderate revision is left undefined. An
incident is a period that an agent must stand still, i.e., acquires a delay with respect to its plan [18,
p. 99]. The delay actually acquired during the execution of a plan is defined as (finish time) minus
(planned finish time). So an agent with a negative delay is ahead of schedule.
These concepts were used to frame the research problem:

– The population of interest is the set of all multi-agent planning systems, but the research is
focused on one such kind of system, namely, aircraft taxiing on airports.

– The researcher used the constructs to state research questions that ask how the robustness of
agent plans is influenced by changes in the topology of the infrastructure and by the frequency
and severity of incidents [18, p. 98].

The constructs defined so far were used to describe delays for different sets of agents [18, p. 105].
More interesting structure could be described by distinguishing mechanism delay from incident
delay. To avoid deadlock, priorities among agents must not be changed during replanning, and this
makes it unavoidable that an agent acquires some delay while waiting to enter a resource because
a higher-priority agent must enter first [18, p. 101]. This may cause other agents to wait behind
the waiting agent as well. This is mechanism delay. Incident delay occurs when an agent has a
temporary breakdown or is waiting behind an agent with incident delay.
With these additional constructs, it became possible to show that mechanism delay and incident
delay respond differently to different parameter settings of the simulation model. For example, it
could be shown that on airports, the MARP algorithms produce fewer mechanism delays than
other planning tools. We return to these explanations in Chap. 14, when we discuss architectural
explanations.

8.4 Construct Validity

If constructs are to be measured, they must be operationalized. This is subject to
the requirements of construct validity. Construct validity is defined by Shadish et
al. [24, p. 506] as the degree to which inferences from phenomena to constructs are
warranted. However, phenomena are not given independently from the constructs by
which we observe them. We observe execution times, project effort, the percentage
of implementation vulnerabilities, etc. We cannot observe phenomena without
already structuring them in terms of constructs. There is no way we can talk about
phenomena independently from our constructs, and hence there is no inference from
phenomena to constructs.

We here define construct validity instead as the degree to which the application
of constructs to phenomena is warranted with respect to the research goals and
questions. Before explaining this and giving examples, please note that construct



www.manaraa.com

88 8 Conceptual Frameworks

Table 8.4 Construct validity requirements and threats

Requirements Threats

Are the constructs defined explicitly so that
researchers can classify and count all and only
the instances of the concept?

Inadequate definition: there is no definition
that allows researchers to clearly classify and
count all and only the instances of the concept

Can instances be classified unambiguously? Construct confounding: an instance that sat-
isfies the concept and satisfies other concepts
too

Do indicators of constructs capture the
intended meaning of the constructs?

Mono-operation bias: the indicators defined
for a concept do not fully capture the concept

Does the method of measurement of an indi-
cator avoid bias?

Mono-method bias: the indicators defined for
a concept are all measured or applied in the
same way

validity is a matter of degree. This is also true for the validity concepts that we
will encounter later, namely, conclusion validity and internal and external validity.
Constructs can be valid to some extent but are never valid totally. Science is fallible.
The memorable remark of Gordon [8, p. 667] about total objectivity and total
certainty deserves to be quoted and framed here:

“That these ideals cannot be attained is not a reason for disregarding them.
Perfect cleanliness is also impossible, but it does not serve as a warrant for
not washing, much less for rolling in a manure pile.”

It is customary to discuss construct validity by means of its threats. Shadish
et al. [24, p. 73] list 14 threats to construct validity, of which we discuss four
(Table 8.4). We also give the positive requirements that justify why some construct
definitions, applications, or measurements threaten construct validity.

The first requirement is that the definition of a construct should allow a researcher
to classify and count instances of the constructs. An inadequate definition is
a threat to the satisfaction of this requirement. Many constructs start their life
inadequately defined:

� We have seen earlier that the concept of an agile project is not defined explicitly to the extent that it
provides clear criteria of classification and counting. There are many clear cases of agile projects,
but there are also borderline cases where it is not clear whether or how the concept should be
applied. The problem can be mitigated by providing a definition that allows researchers to at least
classify and count clear cases of agile projects, even though for borderline cases the definition may
not be of much help.
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Not only a construct may be ambiguous; a case can be ambiguous too. This is called
construct confounding:

� A clearly agile project, in addition to clearly being an agile project, may also clearly be an instance a
project that is over time and budget and clearly be a global software engineering project. To which
population can we generalize our observations? In other words, what is the relevant similarity
relation over which we can generalize?

One way to mitigate this problem is to analyze on which architectural properties
your results depend and check whether all and only the elements of the population
that is the target of your generalization have this architecture.

Some constructs are not directly measurable, such as usability or maintainability.
For these concepts, we need to define measurable indicators. If we define only
one indicator for a construct, then we may not have operationalized the construct
sufficiently, which would introduce bias. This risk is called mono-operation bias:

� Operationalizing maintainability only as time to correct a fault does not fully characterize
maintainability. To better characterize maintainability, we should define more indicators, including
the effort to find a fault and the effort to test a resolution.

Each indicator must be measurable. If we measure an indicator in only one way, we
may introduce a systematic bias. This risk is called mono-method bias:

� Measuring time to correct find a fault by analyzing the log of the programming environment used by
maintainers would be fine if the time stamps in the log are correct. But if maintainers are regularly
interrupted for other tasks, then this method systematically overstates the time to correct a fault,
and it is better to supplement it with other measurement methods.
But other methods may create their own bias. For example, monitoring a maintainer by camera
so that interrupts are registered probably influences the speed by which a maintainer discovers
a fault. Combining measurements obtained with multiple methods with different biases may give
better results.

8.5 Summary

• A conceptual framework defines concepts, called constructs, that define struc-
tures for phenomena. Two important kinds of structures are architectural struc-
tures and statistical structures:

– An architectural structure consists of components with capabilities and limita-
tions. They are organized in such a way that they exhibit patterns of interaction
among components, called mechanisms, by which system-level phenomena
are produced.

– A statistical structure consists of a population and one or more random vari-
ables defined over those populations. Each random variable has a probability
distribution over the population. The distribution is usually unknown, but we
can make assumptions about it.
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• Architectural structures are good for describing individual cases. Statistical
structures are good for describing populations. Both kinds of structures can be
present in one conceptual framework.

• Conceptual frameworks are shared among people. If a researcher wants to
understand the conceptual framework used by people, he or she has to bracket
his or her own framework (temporarily set it aside).

• Conceptual frameworks are tools for the researcher. They can be used to frame
design problems and knowledge problems, specify and describe phenomena,
and generalize about them. Mathematical or conceptual analysis of a framework
enhances these functions.

• Construct validity is the extent to which an application of a construct to
phenomena is warranted. Construct validity is a matter of degree.

Notes

1 Page 76, system architecture. The concept of system architecture is widely applicable, from
industrial product design [22, p. 39] to organizational design [17,26]. The concept also aligns with
the concept of a software architecture as a high-level structure of a software system [25].

Software architecture researchers emphasize that there is not a single, privileged architecture
of a software system [4, 10]. This corresponds to the idea that different system-level phenomena
may require different conceptual frameworks to understand them. I consider this to be a reframing
of the artifact, redescribing it in a different conceptual framework. The ability to reframe an object
by changing the conceptual framework to describe it is important both in design and in empirical
study.
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Chapter 9
Scientific Theories

Like all scientific research, design science aims to develop scientific theories. As
explained earlier in Fig. 1.3, a design science project starts from a knowledge
context consisting of scientific theories, design specifications, useful facts, practical
knowledge and common sense. This is called prior knowledge. The set of scientific
theories used as prior knowledge in a design research project is loosely called its
theoretical framework. When it is finished, a design science project should have
produced additional knowledge, called posterior knowledge. Our primary aim in
design science is to produce posterior knowledge in the form of a contribution to
a scientific theory. In this chapter, we discuss the nature, structure and function of
scientific theories in respectively Sects. 9.1, 9.2, and 9.3.

9.1 Scientific Theories

A theory is a belief that there is a pattern in phenomena.1 This includes all kinds
of theories, including my theory why the Dutch lost the most recent European
Championship, conspiracy theories about the causes of the credit crisis, economic
theories about the causes of the same crisis, the theory of classical mechanics, the
theory of thermodynamics, and string theory. We will here define a theory to be
scientific if it has been submitted to, and survived, two kinds of tests [7, 36]:

• Justification to a critical peer group The theory has been submitted to, and
survived, criticism by critical peers. This is organized in a peer review system,
in which the author of a theory submits it to a peer-reviewed publication process
and the quality of the justification of the theory is critically assessed by peers
before publication. Critical peers have the competence to criticize a paper and
will try to find flaws in the justification of the theory, much as a lawyer would try
to find flaws in the argument of his or her opponent.

© Springer-Verlag Berlin Heidelberg 2014
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• Empirical testing The theory has been submitted to, and survived, tests against
experience. This can be done in observational research or in experimental
research. Part of the justification to critical peers is that these tests do not depend
on the person of the researcher and hence are repeatable: Critical peers must be
able to repeat the empirical tests. They will try to do so.

Surviving criticism and empirical testing is never final. Even for a theory that
survived criticism and testing for a long time, it is always possible that someone
will find a flaw or that a test will falsify part of the theory. Scientific theories are
fallible.2

9.2 The Structure of Scientific Theories

The belief that there is a pattern in a class of phenomena is a generalization.
Scientific generalizations are stated in terms of an explicitly specified conceptual
framework and have a scope. Therefore, theories have the structure shown in
Table 9.1.3

The conceptual framework of a theory, as we have seen in the previous chapter,
serves to frame research problems, to describe phenomena, to analyze the structure
of phenomena, and to state generalizations. Scientific generalizations, in turn, can
be used to explain or predict phenomena or to justify design decisions, although
not each generalization can be used for each of these purposes. More on this below.
First, consider the scope of a scientific theory.

9.2.1 The Scope of Scientific Theories

The scope of a scientific theory is the set of all cases about which it generalizes. It is
the set of possible targets of generalization. The scope of a theory may be fuzzy, even
if we think it is not. Scientific research can produce surprises about what exactly is
inside and what is outside the scope of a theory.

For example, the classical theory of mechanics was thought to have universal
scope until Einstein showed that bodies close to the speed of light are outside its
scope. And what is “close to the speed of light”? There is some fuzziness here.
Closer to home, theories about effort estimation, coordination in global software

Table 9.1 Structure of scientific theories

• Conceptual framework
• Generalization(s)
• Scope
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engineering, and organizational change all have a fuzzy scope. Research may
produce incrementally better insights in what the scope of these theories is.

In sample-based research, the population is the set of all possible objects of study,
from which we select a sample. This is the scope of our statistical generalizations.
But even here there is fuzziness:

� For example, Huynh and Miller [24] concluded from their data that about 73 % of the vulnerabilities
in web applications are implementation vulnerabilities. The population here is the set of all web
applications, and this is also the scope of the generalization. Population and scope are identical.
But what is the set of all web applications? The applications that existed at the time of research? Or
of today? Or all possible web applications, past, present, and future? How can we draw a random
sample from this set?

The solution to this puzzle is to define a sampling frame, which is a list of objects of
study from which we will select a sample. This is a crisp set, exhaustively listed
by the sampling frame. It is called the study population. If we select a random
sample from the study population, we can generalize from the sample to the study
population using statistical inference.

The study population is a subset of a larger population, called the theoretical
population, that may be fuzzily defined and that is nevertheless the intended scope
of the generalizations of our theory. To generalize from sample observations to a
theoretical population, we first generalize to the study population using statistical
inference and then from the study population to the theoretical population by
analogy. This is explained at length in Part IV, and it is illustrated in Chap. 13
when we discuss statistical difference-making experiments.

In case-based research, we do not use the concept of a study population, but
sample our cases one by one, based on similarity, from a theoretical population
that may be fuzzily and incompletely defined. We generalize by analogy from
the sampled cases to all “similar” cases, which is the imperfectly understood
theoretical population. This process is called analytical induction, and it is discussed
in Chap. 14:

� The ARE project investigated agile software development projects done for small- and medium-
sized enterprises (SMEs). This population predicate defines a fuzzy theoretical population,
because the concepts of agile and SME are fuzzy. Nevertheless, the developed theory is applicable
to the many clear cases of agile projects done for SMEs. The theory was developed incrementally
by doing a series of case studies.

9.2.2 The Structure of Design Theories

A design theory is a scientific theory about the interactions between an artifact and
its context [48]. We may have a design theory about a composite system in its
context or about a component of a system and its context. As indicated in Table 9.2,
a design theory contains generalizations about the effects of the interactions between
an artifact and its context and, possibly, about the satisfaction of requirements.4
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Table 9.2 Structure of design theories

• Conceptual framework
• Generalization(s)

– Effect generalization: (An artifact designed like this) interacting with (a context
satisfying these assumptions) produces (effects like these).

– Requirements satisfaction generalization: (Effects like these) satisfy (these
requirements) to some extent.

• Scope

An effect generalization says what the effects of the interactions between an
artifact and its context are. It is developed by answering effect questions, trade-off
questions, and sensitivity questions. The result is a generalization over a class of
similar artifacts and a class of similar contexts:

• (specification of artifact) � (assumptions about context) Ý effects,

abbreviated S � A Ý E . Informally, we can read this as (an artifact designed
like this) interacting with (a context satisfying these assumptions) produces (effects
like these). The specification S of the artifact design is incomplete, as it includes
some implementation freedom as well as the design freedom explored by answering
trade-off questions. The assumptions A about the context likewise leave freedom to
choose different contexts, as explored by answering sensitivity questions.

A requirements satisfaction generalization says to what extent effects satisfy
a requirement:

• The effects satisfy these requirements to some extent.

Satisfaction is a matter of degree, and it may be negative, i.e., an effect may violate
a requirement. A design theory may not contain any requirements satisfaction
generalization. What the requirements are depends on the context of stakeholder
goals, and this is independent from what effects are produced by the interactions
between artifacts and context. Generalizations may be descriptive or explanatory.
Here are some examples:

� The theory about the DOA estimation algorithm describes, explains, and predicts what the output
of the algorithm in the intended problem context is: an estimate of direction of arrival of plane
waves. The explanation of this effect specifies the essential structure of the estimation algorithm
but does not specify it down to the last design choice. There are many different implementations
of the algorithm, and these are all in the scope of the generalization. The assumptions about the
context are that waves are plane, distances among antenna’s are equal and constant, bandwidth
is narrow, etc. There are a lot of contexts that satisfy these assumptions, and they are all in scope
of the generalization.
The generalization is descriptive, as it describes the responses to stimuli. But it also explains this
in terms of the structure of the algorithm, and so this is also an explanatory effect generalization.
In another generalization, the theory describes that the accuracy of the estimation is best when the
signal-to-noise ratio is 60 Db. It does not give an explanation of this, so this is a descriptive effect
generalization.



www.manaraa.com

9.3 The Functions of Scientific Theories 97

In yet another generalization, the theory says that the MUSIC algorithm executes faster than 7.7 ms
and has an accuracy of one degree. So it satisfies the requirement on execution speed. There is
no explanation of this, so this is a descriptive requirements satisfaction generalization.

� Prechelt et al. [31] compared the maintenance effort of programs commented by a technique called
pattern comment lines (PCLs) with the maintenance effort of programs not commented this way.
The research supported the effect generalization that on the average, programs with PCLs are
easier to maintain than programs without PCLs that are otherwise similar. The design specification
of PCLs leaves a lot of freedom. The specification is that PCLs describe pattern usage where
applicable. All comments that describe pattern usage could be in the scope of this generalization.
There are no assumptions about the program other than that they are object-oriented programs
written in Java or C++, so at least these programs are in scope. Identifying more assumptions
about the programs in which PCLs are used is one topic of further research, intended to get more
clarity about the scope of the generalization.
The effect generalization is descriptive. An additional generalization about cognitive mechanisms
of program comprehension is offered as explanation of the descriptive generalization. Note that
this is a mechanism in the context (the programmer) of the artifact (the PCLs).
There is no requirements satisfaction generalization. However, it is understood that in any
stakeholder context, lower maintenance effort is better.

9.3 The Functions of Scientific Theories

Scientific theories can be used to explore, frame, describe, explain, predict, specify,
design, control, and organize phenomena [8]. In this book, we discuss only a few
of these functions, and we divide these into two groups, the functions of conceptual
frameworks and the functions of generalizations. In the previous chapter, we looked
at the use of conceptual frameworks to frame, specify, and describe phenomena and
to generalize about them. Here we look at three core functions of generalizations:
explanation, prediction, and design.

9.3.1 Explanation

An explanation is a hypothesis about the way that a phenomenon came about.
Explanations take us beyond hard observable facts. Explanations, like all scientific
theories, are always fallible, but we try to raise the quality of the support of
explanations by submitting them to the test of practice and to the critique of
competent peers.

We distinguish three kinds of explanations that ask for causes, mechanisms,
and reasons, respectively. This classification corresponds to the three kinds of
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explanatory questions listed in Chap. 2 (p. 18). We give the definitions first and
then give some extensive examples:

• Suppose you want to explain why a variable Y changed. A causal explanation
would say that Y changed because, earlier, a variable X changed in a particular
way. This is a difference-making view of causality, because it says that a
difference in X makes a difference for Y . We leave open whether the change is
deterministic or not. If it is nondeterministic, Y changes with some probability,
and possibly even the probability distribution of Y as a whole may change.5

In the difference-making view of causation, it is meaningless to ask why Y has
some value. The only meaningful causal explanatory question to ask is why it has
changed its value or more generally why it has a different value than elsewhere:

� For example, it is meaningless to ask why maintenance effort is low. We can ask why it has
become low or why it is lower than in other cases that seem to be similar. We may then offer
as causal explanation that, for example, a particular software engineering technique A is used,
and introduction of A usually reduces maintenance effort. Our explanation is that A makes the
difference.

• An architectural explanation says that phenomenon E happened in the object
of study because components C1; : : : ; Cn of the object of study interacted to pro-
duce E . The interactions that produced E are collectively called the mechanism
that produced E . Mechanisms may be deterministic or nondeterministic.6

Architectural explanations can explain a hypothesized causal relationship. For
example, if we have support for the causal generalization that a change in
property X of an object of study causes a change in property Y , we may
investigate the components and organization of the object of study to see by
which mechanism X influences Y :

� Suppose after some experimentation with light bulbs and switches in the rooms of a building
we have come to the following causal generalization: Flipping a light switch causes a light to
switch on. We can use this generalization to give a causal explanation of an observation that a
light is on: The switch was flipped. This made the difference between the light being on rather
than off.
Next, we ask a new kind of why question: Why does flipping a switch make a difference to
the light? By which mechanism does this happen? After some more research, we propose an
explanation in terms of a mechanism involving the switch, the light, the wiring that connects the
two, and the electricity supply. This is an architectural explanation.

• A rational explanation explains phenomena in terms of the goals of the actor. It
says that a phenomenon occurred because an actor wanted to achieve a goal:

� A rational explanation why the light could be this: It is on because someone wanted to read a
book.

The actor can be a legal or biological person and is assumed to have goals and be
rational about them. A rational explanation gives reasons for action, not causes
of action. In Dutch winters, I have no reason to jump into a swimming pool, but
your pushing me may cause me to jump into the pool.



www.manaraa.com

9.3 The Functions of Scientific Theories 99

Note that reasons are unobservable. Information about reasons for action can be
gotten by interviewing the actor that performed the action or by observing an
actor’s behavior and interpreting it in terms of the conceptual framework of the
actor. Rational explanations are important in design science because we need to
discover how an artifact in a context contributes to stakeholder goals.

We will be strict in our terminology. Causes cause effects; mechanisms produce
system-level phenomena; goals provide reasons. Here are some examples:

� In the example of Prechelt et al. [31] given above, it was found that on the average, programs
with PCls are easier to maintain than programs without PCls that are otherwise similar. The causal
explanation of this was that PCLs cause maintenance effort to reduce.
The architectural explanation of this causal influence was that PCLs focus the attention of the
maintainer to patterns, which are beacons that are familiar and allow the maintainer to switch
from a labor-intensive bottom-up understanding of the program to a faster top-down approach to
understanding the program. This reduces the psychological effort of the maintainer.

� In the EA project, the design theory said that using the ARMOR method will result in an enterprise
architecture that is well aligned with business goals [12]. This is a causal generalization. If a
company uses ARMOR to define their enterprise architecture and ends up with a well-aligned
enterprise architecture, then the causal explanation of this is that they used the ARMOR method
(and not some other method).
This causal influence is in turn explained architecturally by referring to the steps and supporting
tools and techniques of the ARMOR method. The architectural explanation says that the method
is the mechanism by which the effects are produced.

• In the ARE project, it was observed in six case studies that if the client of an agile project is a small,
or medium-sized enterprise (SME), they will not put a customer on-site of the project. Earlier, we
have given an architectural explanation of this, namely, that the capabilities of SMEs are limited.
Because the company is small, it will have a limited budget for the project, and its business priorities
will not be in favor of putting a customer on-site.
We now extend and support this by a rational explanation, namely, that one of the goals of an
SME is to use their resources as effectively and efficiently as possible. In the perception of the
entrepreneur who leads the SME, developing a software or information system is the business of
the developer, not of SME’s employees.

9.3.2 Prediction

Like explanations, predictions take us beyond the facts that have been observed. But
where explanations look at the past and hypothesize a possible cause, mechanism, or
reason that has brought about the observed facts, predictions look at the future and
claim that something will happen in the future. Often we can use a generalization to
explain as well as to predict, but this is not always the case. Some explanations may
be too incomplete to allow us to base predictions on them [26, p. 349]. Here are a
few examples:

� The generalizations in the examples above, namely, in the study by Prechelt [31], in the EA project,
and in the ARE project, can all be used as explanations and as predictions. This is good because
they are design theories, and the primary function of design theories is to predict what will happen
if an artifact is implemented.
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� As an example of a generalization that explains but does not predict, consider a project failure.
After it occurred, we investigate it, and we develop a theory about what caused it and by which
social mechanisms the failure was produced. Then we have explained the failure.
But this does not mean we are now able to predict that these social mechanisms will lead to project
failure in the future. There are too many factors that influence project success, and the social
mechanisms that were responsible for the failure in the project that we investigated may not be
responsible for failure in the next project. They may be counterbalanced by other mechanisms,
and we do not know how all these social mechanisms interfere with each other. Many of our
explanations of social phenomena are incomplete.

� There are also generalizations that can be used for prediction that are purely descriptive and give
no explanation. Statistical generalizations are like that. The average percentage of implementation
vulnerabilities found in web applications by Huynh and Miller [24] is about 73 % with a small
standard deviation of less than 4 %. This may be used to predict that other web applications have
a similar percentage of implementation vulnerabilities, without understanding why.

� Performance measurements too may give us descriptive generalizations that may be used to
predict but not to explain. For example, in the DOA project, performance measurements showed
that on a range of test problems, execution time was below 7.7 ms. There is no explanation for this.
Why not 7.5 or 7.8?
Since this performance was repeatable, it was stated as a descriptive generalization and used
to predict that in other implementations of the same algorithm, in contexts satisfying the same
assumptions, the same performance will be achieved.

9.3.3 Design

Design theories are tools to be used in design practice, and as all tools, they must
be usable and useful. Suppose the design theory says that S � A Ý E where S

is an artifact specification, A are context assumptions, and E describes effects.
Usability of this theory in design depends on the capabilities of the practitioner.
The practitioner must have the competence, time, money, and other resources to
use a design theory for his or her purposes. The practitioner must at least have the
following two capabilities:

1. The practitioner has the capability to acquire or build an artifact that satisfies
specification S of the theory.

2. The practitioner has the capability to ascertain that the context satisfies the
assumptions A of the theory.

Utility depends on whether the effects will actually occur in the practitioner’s
context and whether they will serve the goals of stakeholders:

3. The predicted effects E will occur.
4. E will satisfy requirements or at least will contribute to the goals of stakeholders

in the practitioner’s context.

Why would predicted effects not occur? Because the theory may be false of
the practitioner’s context. The theory is middle range and may abstract from
components and mechanisms in a concrete situation that interfere with the predicted
effect.
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To assess whether a theory is usable and useful, a practitioner must assess the
following risks:

1. The risk to acquire or build an incorrect artifact, i.e., one that does not satisfy
specification S

2. The risk that a given context does not satisfy the assumptions A

3. The risk that mechanisms in the actual context of the artifact, not accounted for
by the theory, will prevent the predicted effects to occur

4. The risk that the predicted effects E will not satisfy the requirements or not
contribute to stakeholder goals

To make this concrete, here are two examples:

� In the EA project, the enterprise architecture design method ARMOR was developed to help
enterprise architects design architectures that are well aligned with, and traceable to, business
goals. The theory says that using ARMOR improves alignment between business goals and
enterprise architecture. Is this theory usable?
First, is it in the capability of the architects to use ARMOR? First, experience suggests a qualified
yes [13]. The architects in one case were able to use ARMOR but also misused considerable parts
of it, because those parts of the conceptual model of ARMOR were misunderstood by them. So
in fact this implementation of ARMOR was not correct. This posed little risk because ARMOR was
an addition to their existing design practice and the only effect of misusing an ARMOR construct
is that a diagram does not mean what it is supposed to mean according to the language definition.
However, among themselves, they knew what was meant by the diagram.
Second, can the architects recognize whether their context satisfies the assumptions of ARMOR?
The only assumption made by ARMOR is that the organization has a mature architecture
department, and this could be ascertained by the architects themselves.
Third, could the architects trust the prediction of the theory in their case? They were aware of
the many interfering conditions of practice of real-world enterprise architecture contexts, such as
incomplete documentation, political pressure, and limited time. They accepted these risks, because
they trusted their own experience and competence in dealing with unexpected conditions. They
believed that despite this interference, the predicted effects would occur.
Finally, did the predicted effects contribute to stakeholder goals? At the time of writing, it is too
early to say, but it was rational for the architects to expect this. The business goals were to reduce
the cost of enterprise architecture and increase flexibility, and linking an enterprise architecture to
business goals by means of ARMOR would contribute to these goals.

� In the MARP problem, the design theory for the dynamic route planning algorithms predicts
reduction of delays in taxi routing on airports.
Who would be the user of this theory? To produce the predicted effect on an airport, all airplanes
taxiing on the airport should use these algorithms. It is not within the capability of an airport to
realize this, nor is it in the capability of any individual airline company. It is in the capability of
an aircraft manufacturer to implement these algorithms, but no single aircraft manufacturer could
force other manufacturers to use the same algorithms. An international standardization body could
enforce this. So possibly, the design theory could be usable by an international standardization
body. It is not usable by the other stakeholders by themselves.
Would the predicted effects occur on any airport under all circumstances? More validation would
have to be done to provide support for this.
Would it be useful for a standardization body to use the design theory? That depends on their
goals. If reducing delays caused by taxiing on airports is an important goal, they may consider
committing their resource to realizing MARP and its design theory in all airplanes.
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9.4 Summary

• A theory is a belief that there is a pattern in phenomena. Scientific theories are
theories that survived the test of peer criticism and the test of practice.

• A scientific theory consists of a conceptual framework and generalizations with
a scope:

– In design theories, there are two kinds of generalizations, namely, effect
generalizations and requirements satisfaction generalizations.

– The scope of a theory is a population of objects of study of which it is true.
The population may be fuzzily and incompletely defined.

• Theories are used to explain or predict phenomena. There are three kinds of
explanations:

– A causal explanation says that a variable Y changed because a variable X

changed in a particular way earlier.
– An architectural explanation says that a phenomenon was produced by the

interactions among a number of architectural components. These interactions
are the mechanism that produced the phenomenon.

– A rational explanation says that an actor performed an action in order to
achieve some goal.

• Theories can be used for design:

– A design theory is usable by practitioners if it is in their capability to acquire
or construct the artifact and to recognize whether their context satisfies the
assumptions of the theory.

– A design theory is useful for a practitioner if the predicted effects will occur
and will contribute to stakeholder goals.

Notes

1Page 93, definition of theories. Taken from Craver [8, p. 55]. After adoption of a theory, what
appeared to be a chaotic bundle of phenomena turns out to exhibit a pattern. Kaplan [26, p. 295]
contrasts theory with unreflective habit. Habit exploits regularities in phenomena but never pauses
to reflect and identify the underlying pattern.

Very usefully, Craver [8] reviews three philosophical perspectives on theories:

• The “once received view” (ORV), according to which a theory is an axiomatic system in a
formal language. The laws of nature are nonlogical axioms, correspondence rules relate non-
observable constructs to phenomena, and predictions are deductions of observation statements
from the theory plus initial conditions. This view has been shown to be false (no scientific theory
is like this) and incoherent (e.g., it is logically impossible to define a theory-free observation
language). Craver reviews some well-known arguments against the ORV.

• According to the model-based view, a theory is a semantic rather than a linguistic structure.
Scientists build semantic models of phenomena.

• The third view is a specialization of the second view and says that theories are models of
mechanisms found in phenomena.
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Machamer [32] reviews how these views came to succeed each other. Godfrey-Smith [16] gives a
readable book-length introduction, running through the whole story from logical positivism to the
views of Popper, Kuhn, Lakatos, Laudan, and Feyerabend and treating some special topics such as
scientific realism and Bayesian theories of evidence.

2Page 94, fallibility of theories. Fallibilism should not be confused with falsificationism.
Fallibilism is the belief that theories are fallible and that every theory is a potential subject of
improvement. Falsificationism is a guideline for dealing with falsification. The guideline says that
if a theory is falsified, i.e., if it fails a test, it should be rejected. This guideline is the centerpiece
of Popper’s philosophy of science [41].

Kuhn [28] showed that in practice, scientists try to replicate falsifications before they believe it
is a stable falsification. If they believe it is a stable falsification, they may shelve the falsification as
a puzzling result to be studied in more detail later, or they may reframe their conceptual framework
to see if the falsification can be defined away. Historical examples of reframing after falsification
are given by Kuhn [28] and also by Lakatos [29, 30] and Bechtel and Richardson [2]. Reframing
the problem and revising theoretical generalizations are core strategies in analytical induction [42].

3 Page 94, structure of theories. Gregor [18] presents a very similar structure of theories in
information systems. The elements above the line in the following table are obligatory in Gregor’s
framework; the ones below the line are optional in her framework.

Gregor [18] This book

Means of representation Not part of a theory in this book. One and the same
theory can be represented in many different ways without
changing the theory

Constructs Conceptual framework

Statements of relationship Generalizations

Scope Scope

Causal explanation This is one kind of explanation, next to architectural and
rational explanations

Testable propositions (hypotheses) Theories must be empirically testable, but testable
propositions derived from the theory are not part of the
theory

Prescriptive statements Scientific theories do not prescribe anything

Sjoberg et al. [46] present a theory of UML-based development consisting of (1) a conceptual
framework, (2) propositions, (3) explanations, and (4) an indication of scope. This parallels
the structure of theories in this chapter. The similarity goes further, for their propositions and
explanations seem to be causal and architectural explanations, respectively, introduced later in this
chapter.

4 Page 95, structure of design theories. Gregor and Jones [19] outline a structure for design
theories in eight components that is more complex than the structure proposed here. All of the
elements of their structure are covered by the approach in this book, but not all are part of design
theories as defined here. The elements above the line in the following table are part of design
theories in this book. The elements below the line are accounted for in other ways.

Gregor and Jones [19] This book

Constructs Conceptual framework

Testable propositions Generalizations
Scope Scope

Justificatory knowledge Prior knowledge

Purpose Artifact requirements, stakeholder goals

Principles of form and function Design choices

Artifact mutability Artifact variants (trade-offs)

Principles of implementation Could be part of implementation theory

Expository instantiation Validation model
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The testable propositions of Gregor and Jones here seem to take the place of generalizations.
Justificatory knowledge is part of the body of knowledge that a theory builds on. It is sometimes
called a reference theory, which is a theory from another discipline to understand the interactions
between an artifact and its context. The other elements in the list are products of a design process,
such as artifact requirements, design choices, artifact variants, and a validation model. Principles of
implementation could be a part of a theory of implementation but not of a design theory as defined
in this book.

5 Page 98, causal explanation. The literature on causality is vast. It contains many fragments of
insights but no unifying theory. Some sources that I have found very helpful, and that influenced the
treatment of causality in this book, are the following. First, in order not to get lost in abstraction,
it helps to see how the concept is used in various sciences. Parascandola and Weed give a very
relevant overview of five different concepts of causation in epidemiology [38]. One is the concept
of production, which corresponds to the architectural view in this book, and the other four are
different concepts of deterministic and nondeterministic causation, which are variants of the
difference-making view in this book. Another interesting source is Goldthorpe’s [17] practical
summary of the different views on causality for sociology researchers, where we see the same
distinction between generative mechanisms on the one hand and causation as difference-making
on the other hand. Russo and Williamson [44,45] give very readable introductions to causality and
mechanisms in the health science, with practical examples.

The above papers give useful insights for the practicing researcher. A second group of sources
is more philosophical. Cartwright [5,6] gives a deep philosophical analysis of the use of causality in
physics and economics that is worth reading. The concept of capacity discussed by Cartwright [6]
inspired the concept of capability used in this book.

Much of the philosophical literature, however, is domain independent. A useful starting point
is Woodward’s essay on the manipulability theory of causality [50], which is a version of the
difference-making view that is well suited to the causal analysis of experiments. A much more
elaborate treatment is given in his book [49]. Menzies [35] summarizes classical theories of
counterfactual causation.

A third group of sources relates causality to probability and statistics. Hitchcock [22] gives
a brief and readable introduction to probabilistic views of causality. A classic paper by Holland
relates the difference-making view of causality presented here to randomized controlled trials [23].
Berk [3] gives a more methodological treatment, with examples from applied statistics in sociology,
from the school of Freedman. The counterfactual theory of probabilistic causation described in
these papers is based on work by Rubin [43], who himself traces it to original work by Neyman.
Pearl [40] presents an integration of the counterfactual view of probabilistic causation with his
own graphical approach. If you find the book overwhelming, you could start with his overview
paper [39]. Morgan and Winship [37] give a clear introduction to Rubin’s counterfactual approach
to causal inference, integrating it with Pearl’s [40] graphical approach.

6 Page 98, architectural explanation. Architectural explanations are called mechanistic
explanations in the methodology of biology and of the health sciences [44, 45, 47], of psychia-
try [27], of psychology [9], and of the social sciences [10, 11, 20, 21].

Glennan [14, 15] and Machamer et al. [33] give different definitions of the concept of
mechanism. Illari and Williamson [34] survey these and other definitions and integrate them in
a unifying definition. In this definition, a mechanism for a phenomenon consists of “entities and
activities organized in such a way that they are responsible for the phenomenon.” This is close
to the software engineering concept of an architecture [25], with the special twist that Illari and
Williamson treat entities and activities on the same footing. I view both as components, one more
stable than then other.

Bechtel and Abrahamsen [1] and Bechtel and Richardson [2] give many historical examples
of how biologists discovered the components of biological and biochemical processes, such as
fermentation and biological inheritance. Bunge [4] and Elster [10, 11] give examples of social
mechanisms, which are nondeterministic.
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Chapter 10
The Empirical Cycle

We now turn to the empirical cycle, which is a rational way to answer scientific
knowledge questions. It is structured as a checklist of issues to decide when a
researcher designs a research setup, and wants to reason about the data produced
by this setup.1

Our checklist covers the context of empirical research as well as the cycle of
empirical research itself. The first and last parts of the checklist consist of questions
about the context. These parts are discussed in Sect. 10.1. The rest of the checklist
is about the cycle of empirical research, and a bird’s-eye view of this is presented
in Sect. 10.2. The cycle starts with a list of questions about framing the research
problem, and this is presented in Sect. 10.3. The rest of the checklist is about
designing the research setup and the inferences from it, about research execution,
and about data analysis. Sections 10.4–10.6 give a preview of this, and in the
following chapters, these parts of the checklist are treated in detail. Appendix B
summarizes the checklist.

Not all items of the checklist are relevant for each research method. In part V,
we will explain and illustrate four different research methods using the relevant
parts of the checklist. We have already encountered these methods when discussing
research methods for implementation evaluation (Chap. 5) and treatment validation
(Chap. 7).

The checklist of the empirical cycle is a logical grouping of questions that help
you to find justifiable answers to scientific knowledge questions. It is not necessarily
a sequence of tasks to be performed exactly in the order listed. This is similar to the
design cycle. In Chap. 3, we saw that the design cycle is a rational way to solve
design problems but that design managers may organize the design process in many
different ways. In Sect. 10.7, we will see that research managers can organize the
research process in different ways but that they should respect some basic rules of
scientific knowledge acquisition that prohibit cheating and require full disclosure of
the knowledge acquisition process.

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__10
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A final preliminary remark is that the empirical cycle is a heavyweight tool to
answer knowledge questions. There are much easier and less resource-consuming
ways to answer a knowledge question, for example, by reading the literature, asking
experts, or testing a prototype without the elaborate conceptual framework and
safeguards against wrong conclusions needed for scientific research. The choice to
follow the empirical cycle depends on your knowledge goal and available budget.
Henceforth, we assume that your goal is to advance scientific knowledge and to
publish about it and that your budget provides the money to acquire the necessary
resources and the time to do the required scientific research.

10.1 The Research Context

Table 10.1 shows the checklist questions for the research context. The first question
asks what the (1) knowledge goal of this research is. The knowledge goal summa-
rizes in one phrase all knowledge questions that you want to answer in the study.
In curiosity-driven research, your knowledge goal may be to learn more about an
artifact. If you are working in the context of a higher-level design or engineering

Table 10.1 Checklist for the research context

1. Knowledge goal(s)

– What do you want to know? Is this part of an implementation evaluation, a problem
investigation, a survey of existing treatments, or a new technology validation?

2. Improvement goal(s)?

– If there is a higher-level engineering cycle, what is the goal of that cycle?
– If this is a curiosity-driven project, are there credible application scenarios for the

project results?

3. Current knowledge

– State of the knowledge in published scientific, technical, and professional litera-
ture?

– Available expert knowledge?
– Why is your research needed? Do you want to add anything, e.g., confirm or falsify

something?
– Theoretical framework that you will use?

17. Contribution to knowledge goal(s)

– Refer back to items 1 and 3

18. Contribution to improvement goal(s)?

– Refer back to item 2
– If there is no improvement goal, is there a potential contribution to practice?



www.manaraa.com

10.2 The Empirical Cycle 111

cycle, your knowledge goal may be related to a task in the engineering cycle. Typical
knowledge goals in the engineering cycle are:

• To investigate an improvement problem in the field
• To survey possible treatments
• To validate a design
• To evaluate an implementation in the field

The second question of the checklist asks whether you are working in the context of
a higher-level design or engineering cycle with an (2) improvement goal. If you do,
you are doing utility-driven research, and it is useful to state this design context in a
research report. If you are not working in the context of a higher-level design cycle,
you are doing curiosity-driven research.

To assess whether or not existing knowledge is sufficient to answer your ques-
tions, you must summarize (3) current knowledge. This is the summary of the review
of scientific, technical, and professional literature relevant to your knowledge goal.
In a research report, this may be called “related work” or “theoretical background.”

The context checklist continues at the point where you have finished your
research. At that point, you have to return to your knowledge goal. What is the
(17) contribution to the knowledge goal? What do you give back to the knowledge
context of your research? In a research report, this is often called “implications for
research.”

If there was an improvement goal that motivated your project, then you have
to return to it now. What is your (18) contribution to the improvement goal?
For curiosity-driven research too, the knowledge acquired by the study may have
practical use. In a research report, the section describing these possible uses is often
called “implications for practice.”

10.2 The Empirical Cycle

After summarizing current knowledge, you may assess whether your knowledge
goal has already been achieved sufficiently. If your research goal is to advance
scientific knowledge beyond current knowledge and to publish about it and if your
budget allows it, then you can use the checklist questions of the empirical cycle to
structure your research (Fig. 10.1). You may also use the empirical cycle to decide
what to put in a research report and to analyze the contents of a research report.

The empirical cycle has the structure of a rational decision cycle, just like the
engineering cycle:

• Research problem analysis. What is the research problem to be solved? Here
you frame the research problem. We treat this part of the checklist in the next
section.
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Research problem analysis
4.   Conceptual framework?
5.   Knowledge ques�ons?
6.   Popula�on?

Research & inference  designValida�on

Research execu�on

7.   Object(s) of study?
8.   Treatment specifica�on?
9.   Measurement specifica�on?
10. Inferences?

7.   Validity of object(s) of study?
8.   Validity of treatment specifica�on?
9.   Validity of measurement specifica�on?
10. Validity of inference design?

Data analysis
12. Descrip�ons?
13. Sta�s�cal conclusions?
14. Explana�ons?
15. Generaliza�ons?
16. Answers to knowledge ques�ons?

11. What happened?

Fig. 10.1 The empirical cycle

• Research design and inference design. What are you going to do to solve the
knowledge problem? This is the research setup, and its design is treated in the
next chapter. And how you are going to draw conclusions from the data generated
by the research setup? This is inference design, and it is treated in Chaps. 12–15.

• Validation of research and inference design. The research setup and inferences
must match each other, and they must be sufficient to answer the knowledge
questions.

• Research execution. Research is executed according to the research design,
but unexpected events may happen. Events relevant for the interpretation of the
results must be reported.

• Data analysis. The data generated by the research is analyzed according to the
inference design. Examples of execution and data analysis for different research
methods are given in part V.

Validation in the empirical cycle is about the match between the research setup
and inferences from the data. The major question is to what extent the research setup
can support the inferences that we plan to do from the data. We extend this with two
other fundamental questions that ask about repeatability and ethics. Repeatability
is a condition of scientific knowledge acquisition (Sect. 9.1), and ethical norms
are applicable whenever people are involved. This gives us three kinds of validity
questions about a research design:

• Inference support. To what extent does the research setup support the planned
inferences?

• Repeatability. Is the design specified in such a way that competent peers could
repeat the research?

• Ethics. Does the treatment of people respect ethical norms?

Discussion of inference support belongs both to research design and inference
design, because it is about the match between the two. When the design of the
research setup is discussed in the next chapter, inference support cannot be discussed
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in detail because this would require familiarity with inference design. So validity is
touched upon very lightly. Then, when we look at inference design in Chaps. 12–
15, support given to inferences by different research setups is discussed in detail.
Finally, in the explanation of the research methods in part V, validity of each
research setup is treated when we look at research designs.

There is a potential ambiguity in the word “validation.” In the design cycle,
validation is the justification that a designed treatment contributes to stakeholder
goals. In the empirical cycle, validation is the justification that a designed research
setup would provide answers to the knowledge questions. Both kinds of meanings
are used when we discuss the validity (empirical cycle) of the design of validation
research (design cycle). Context will make clear in which sense we use the word.

10.3 The Research Problem

Table 10.2 gives the checklist for framing an empirical research problem. To state
the research problem: you need a (4) conceptual framework that defines the relevant
constructs. The framework can define architectural and statistical structures, and it
is subject to the requirements of construct validity.

Using a conceptual framework, you can state (5) knowledge questions and define
a (6) population. The checklist distinguishes different kinds of knowledge questions
as we have done in Chap. 2. We have also seen that there are three kinds of
explanatory questions that can ask for causes, mechanisms, or reasons, respectively.

Your knowledge questions are about the population, not only about the object that
you are studying. If phenomena in the object of study would have no implication

Table 10.2 Checklist for the research problem statement

4. Conceptual framework

– Conceptual structures? Architectural structures, statistical structures?
– Chance models of random variables: semantics of variables?
– Validity of the conceptual framework? Clarity of definitions, unambiguous applica-

tion, avoidance of mono-operation and mono-method bias?

5. Knowledge questions

– Open (exploratory) or closed (hypothesis-testing) questions?
– Effect, satisfaction, trade-off, or sensitivity questions?
– Descriptive or explanatory questions?

6. Population

– Population predicate? What is the architecture of the elements of the population?
In which ways are all population elements similar to each other and dissimilar to
other elements?

– Chance models of random variables: assumptions about distributions of vari-
ables?
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for phenomena in any other object, then they would be random. Why should
we want to publish a random fact, or why would anyone want to read about it?
The aim of research is to find systematic relations among phenomena that can be
generalized beyond the particular cases in which these phenomena were observed.
These generalizations are fallible, and if our goal is total certainty, we should not
make them. But if we accept fallible generalizations, then we should generalize, and
we should support our generalizations with the best arguments that we can produce
to survive the test of practice and the criticism of competent peers. This point is
important, so I illustrate with an example:

� It is good to know that in one organization, global software engineering projects use a gatekeeper
to maintain a consistent information state across different project locations, but if this would have
no implication whatsoever for similar projects in similar companies, then this would be a random
fact. Why should we publish about a random fact? But if it is not a random fact, then it is a fact
about a population larger than just the single project that was studied. For example, it could be a
fact about coordination mechanisms in global software engineering projects. The population would
then be the population of global software engineering projects. Support for this generalization can
be sought by repeating the research on different global software engineering projects.

10.4 The Research Setup

To answer a knowledge question about a population, the researcher needs one
or more objects of study (OoSs). As indicated in Fig. 10.2, these have some
relationship with the population, so that knowledge questions about the population
can be answered by studying OoSs. In case-based research, the researcher studies
OoS separately. Each studied object is called a case. To generalize from a case to
a population, the similarity between the studied cases and other cases from the
population must be assessed. In sample-based research, the researcher studies a

Object 
of Study 

(OoS)

Treatment 
instruments

Measurement 
instruments

Popula�on

Researcher

Sample

OoS

OoS

OoS

Fig. 10.2 Empirical research setup. In observational research, there is no treatment. Case-based
research studies individual objects of study; sample-based research studies samples of objects of study
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sample of cases. To generalize statistically from a sample to a population, the sample
selection procedure must be understood.

The difference between case-based and sample-based research is that in case-
based research we study individual objects and aim to generalize, by analogy,
to similar objects. In sample-based research, we do not study individuals but
samples and aim to generalize to the population from which the sample was drawn.
Case-based research studies architectural structures; sample-based research studies
statistical structures (Chap. 8).

Sampling plays a role in both kinds of research, but differently. Case-based
research studies cases separately, and often in series, in a process of analytical
induction. After studying one case, the conceptual framework and generalization
based on the case population may be revised before a next case is studied. This
revision may even include a redefinition of the population. Sample-based research,
by contrast, studies samples as a whole, in other words studies all objects in
the sample at the same time. Sampling must be finished before the sample as a
whole can be studied. After studying a sample, statistical inference is used to draw
conclusions about the population.

A second classification of research setups is into observational and experimen-
tal research. In experimental research, the researcher applies an experimental
treatment to the OoS and measures what happens. In observational research, the
researcher refrains from intervening and just measures phenomena in the OoS:

� If you study a software engineering project to see how requirements are managed, then you do
an observational case study. If you take a web-based survey of projects to collect statistics about
how requirements are managed, you are doing a sample-based observational study. You measure
phenomena, but you do not intervene.
If on the other hand you test a new requirements management technique in a pilot project, you are
doing an experiment, because you intervene in the project. In the terminology of this book, it is a
single-case mechanism experiment. If you compare two requirements management techniques by
asking one group of student projects to use one technique and the other group of projects to use
the other, then you are doing a sample-based experiment. In the terminology of this book, you are
doing a statistical difference-making experiment.

Treatment and measurement are both interactions between the researcher and
the OoS. When applying an experimental treatment, the researcher applies a
specific intervention and tries to minimize any other influence. When doing a
measurement, the researcher observes OoS while attempting to minimize any
influence. Instruments are needed for both. In the next chapter, we discuss the
checklist for designing a research setup.

Combining the two distinctions that we made, we get the classification of
research designs shown in Table 10.3. As shown by the chapter numbers, all research
designs except surveys are treated in this book.
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Table 10.3 Some different research designs. Between brackets are the numbers of the chapters where
these designs are explained

Observational study Experimental study

(no treatment) (treatment)
Case-based � Observational case study (17) � Single-case experiment (18)
research � Comparative-cases experiment (14)

� Technical action research (19)

Sample-based � Survey � Randomized controlled trial (20)
research � Quasi-experiment (20) � Quasi-experiment (20)

10.5 Inferences from Data

Measurements generate data. The process of drawing conclusions from these data is
called inference. All of the inferences that we discuss are ampliative, which means
that their conclusions may be false while their premises are true. This is the opposite
of a deductive inference, of which the conclusions are guaranteed to be true when
its premises are true. To manage the fallibility of ampliative inferences, they must
be accompanied by a discussion of their degree of support, which is usually called
a discussion of their validity.2 In the following chapters, we discuss the following
kinds of inferences, each with their own set of validity constraints:

• Descriptive inference summarizes the data into descriptions. It is subject to the
constraints of descriptive validity.

• Statistical inference is the inference of population characteristics from sample
statistics. It is subject to the constraints of conclusion validity.

• Abductive inference postulates the most plausible explanations for your obser-
vations. It is subject to the constraints of internal validity.

• Analogic inference is the generalization of your explanations to similar OoS. It
is subject to the constraints of external validity.

Here is an example that contains all these sorts of inferences:

� Suppose you do a case study on requirements management in global software engineering.
You study one global software engineering project by collecting data from email logs, version
management systems, chat logs, interviews with engineers and other stakeholders, project
meetings, etc.
Descriptive inference is the extraction of informative descriptions from this mountain of data. For
example, you collect statistics about subjects of emails, draw a social network diagram of software
engineers, transcribe and code interviews into concept maps, etc.
If you infer, from the subjects of a random sample of email messages, what the distribution of
subjects in the entire population of email messages is, then you are doing statistical inference.
If you explain why some topics were discussed more frequently than others by means of social
mechanisms of the project, then you do abductive inference.
If you then generalize that similar projects will exchange emails about the same topics by similar
mechanisms, then you are doing analogic inference.
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Fig. 10.3 Road map of inferences

Table 10.4 Case-based and sample-based inference strategies

Case-based inference

1. Descriptive inference: Describe the
case observations.

Sample-based inference

1. Descriptive inference: Describe sam-
ple statistics.

2. Statistical inference: Estimate or test a
statistical model of the population.

2. Abductive inference: Explain the
observations architecturally and/or
rationally.

3. Abductive inference: Explain the model
causally, architecturally and/or ratio-
nally.

3. Analogic inference: Assess whether
the explanations would be true of
architecturally similar cases too.

4. Analogic inference: Assess whether
the statistical model and its explana-
tion would be true of populations of
architecturally similar cases too.

Figure 10.3 gives a road map of inferences, and Table 10.4 shows how we
walk the map in case-based and in sample-based research. Each of the steps in the
inferences is discussed in a separate chapter.

10.6 Execution and Data Analysis

Research execution is the execution of your research design. Usually the design
cannot be executed exactly as designed, and unplanned events may happen. OoS
may interact even if you planned for them not do so, treatments may be delivered
imperfectly, measurements may fail or may disturb the OoS, subjects may drop out,
etc. You must keep a diary of all events that may be relevant for data analysis.
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In data analysis, you perform the inferences that were planned during your
design. The validity of these inference designs is affected by unplanned events
during research execution, and this means that the validity discussion must be
revisited during data analysis, with all of the information you now have about
research execution. It is usually this revised validity discussion that is included in a
research report.

Data analysis results in descriptions, statistical generalizations, explanations, and
analogic generalizations of the results, with varying degrees of support in the data.
Jointly, this should provide enough information to answer the knowledge questions
that were to be answered by the research. Examples of execution and analysis of
research are given for different research methods in part V.

10.7 The Empirical Cycle Is Not a Research Process

The checklist is a logical grouping of questions, not a temporal sequence of tasks
that you must perform. Some questions may not be relevant for the research you are
planning, and questions may be answered in an order different from that in which
they are asked.

Even at the top level of the cycle, you may interleave tasks. For example,
during research execution, you may find that the conceptual framework needs to
be elaborated further or that you may have to redesign a measurement instrument.
The rule here is that almost anything goes.

Almost anything goes. Two things are prohibited, because they defeat the purpose
of knowledge acquisition:

Rule of posterior knowledge: Knowledge created by the research is present after execution
of the research, and it is absent before executing the research.

For example, you cannot test a hypothesis that has been formulated after you
have done the research. If your question was “What is the execution time?” and
your data tells you that execution time is less than 7.7 ms, then you cannot act as
if you have actually been testing the hypothesis “The execution time is less than
7.7 ms.” You had no such hypothesis. If your goal is to acquire knowledge, then you
must not claim to have had that knowledge at a point in time when you hadn’t. This
has to do with causality: If the research outcome caused us to have some knowledge,
we must not act as if “really” that knowledge caused us to set up the research in the
way we did.

There is a dual to this rule:

Rule of prior ignorance: Any knowledge present before doing the research may influence
the outcome of the research.

The only knowledge that cannot influence the outcome of research is knowledge
that did not exist before doing the research. This is the reason why in double-blind
experiments, the researcher observing the outcome of a treatment should not
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know which particular treatment has been allocated to which object of study.
If the researcher would know, we would have to assume that this will influence
the measurements and the measured phenomena.

What about knowledge questions? We might find interesting data that answer
questions that we had not asked. Can we still state these knowledge questions? Yes
you can, but you have to say that you formulated these questions after you did the
research. Knowledge that these questions are relevant was created by the research
and was absent before doing the research. The rule is this:

Rule of full disclosure: All events that could have influenced research conclusions must be
reported.

A special case of this rule is that all data that you collected for your research
should be disclosed. If some data is confidential, then this should be anonymized
first, of course. The information that was removed from the data can then not be
used to draw inferences.

10.8 Summary

• In design research, we try to answer knowledge questions about implementations,
problems, or treatments. The research context may be utility driven or curiosity
driven.

• Empirical research is expensive, and before you attempt it, you should check
other ways of answering knowledge questions, including literature study and
asking experts.

• The research problem to be solved consists of a list of knowledge questions that
presuppose a conceptual framework and assume a population of interest. The
goal of research is to find support for a generalization to that population.

• The empirical cycle is a logical grouping of questions to ask about your research.
You may also use it to decide what to put in a report and to analyze a report.

• The empirical cycle is not a list of tasks to be performed in a certain order. Almost
anything goes, but two things are forbidden:

– Rule of posterior knowledge: Knowledge created by the research is present
after execution of the research, and it is absent before executing the research.

– Rule of prior ignorance: Any knowledge present before doing the research
may influence the outcome of the research.

To ensure this, publication is required:

Rule of full disclosure: All events that could have influenced research conclusions must
be reported.

• Research setup and inference are closely coupled, because the setup must support
the inferences to be done later. Both must be designed before you start the
research.
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Notes

1Page 109, checklists for empirical research. Several checklists have been published in
software engineering, notably by Kitchenham et al. [3] and Wohlin et al. [10] for experimental
research and Juristo and Moreno for statistical research and inference design. Jedlitschka and
Pfahl [2] integrated the then extant checklists for controlled experiments. Runeson et al. [4, 5]
present a checklist for case study research.

For the checklist in this book, I have compared and integrated these checklists [7, 8]. We
have performed an empirical validation of usability by students [1, 9], which led to a considerable
simplification of the integrated checklist. Further simplifications have been found in the preparation
of this book when I applied the checklist to a growing number of research reports that used different
research methods.

2Page 116, validity as degree of support. Validity is defined by Shadish et al. [6, p. 513] as
“the truth of, correctness of, or degree of support for an inference.” I interpret this as three different
definitions, not one. My definition follows the third of these three, degree of support.
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Chapter 11
Research Design

Figure 11.1 shows again the architecture of the empirical research setup. In
this chapter, we discuss the design of each of the components of the research
setup, namely, of the object of study (Sect. 11.1), sample (Sect. 11.2), treatment
(Sect. 11.3), and measurement (Sect. 11.4).

11.1 Object of Study

11.1.1 Acquisition of Objects of Study

An object of study (OoS) is the part of the world that the researcher interacts with
in order to learn something about population elements. It is the entity where the
phenomena occur from which measurements are taken. An OoS can be a population
element or a model of population elements. Remember that a model was defined
in Chap. 7 (p. 61) as an entity whose behavior can be measured and that represents
entities of interest, called its targets:

� In the DOA problem, the OoS is a validation model of real-world implementations of an algorithm
to estimate direction of arrival. It consists of a model of the artifact and a model of the context.
The model of the artifact is a prototype implementation of the DOA algorithm, and the model of the
context consists of a prototype beamforming system, a simulated antenna system, and simulated
signals from plane waves. The validation model represents real TV reception systems in a cars
driving on a road.

� In the ARE problem, eight software development companies were investigated. There were eight
OoSs, and each OoS is a case. These cases are population elements, and they are used to
represent other population elements. The population is the set of all agile software projects done
for small- and medium-sized companies.

� Prechelt et al. [9] used two samples of students to compare different ways of commenting
programs. The objects of study consisted of students who performed maintenance tasks on
programs. The students were elements of the population of students, and the programs were

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__11
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Object 
of Study 

(OoS)

Treatment 
instruments

Measurement 
instruments

Popula�on

Researcher

Sample

OoS

OoS

OoS

Fig. 11.1 Empirical research setup, repeated from Fig. 10.2. In observational research, there is no
treatment

Table 11.1 Checklist for the Object of Study.

7.1 Acquisition of Objects of Study

– If OoS’s are selected: How do you know that a selected entity is a population element?
– If OoS’s are constructed: How do you construct a population element?
– Validity of OoS

- Inference support. Which inferences would be valid with respect to this design?
See checklists for validity of descriptive statistics, abductive and analogic infer-
ences.

- Repeatability. Could other researchers use your report to construct or select a
similar OoS?

- Ethics. Are people informed that they will be studied, and do they consent to this?
Are they free to stop at any time without giving reasons, and do they know this?

constructed models of the set of all programs. So each OoS consisted of a natural part (a student)
and an artificial part (a program) constructed by the researchers.

Table 11.1 gives the checklist for selecting or constructing an OoS. An OoS can be
constructed by the researcher, as in the DOA example, or selected from a population,
as in the ARE example, or it can contain a natural and a constructed part, as in the
study by Prechelt et al.

11.1.2 Validity of Objects of Study

In order for the OoS to support an inference, it must support the validity require-
ments of the inference. We look at these requirements in detail in the chapters to
come and here only give a brief preview.
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For descriptive and statistical inference, a chance model must be defined for the
variables. This implies that the variables must be observable properties of the objects
of study and that the objects of study must satisfy the population predicate.

For causal inference in experiments, the OoS should not be influenced by
anything else than the experimental treatment. For architectural inference as well
as analogic inference, the OoS should match the architecture as specified in the
population predicate. For rational inference, goals and motivations of actors should
be observable. Of course, real objects of study will satisfy these requirements to
some extent, but not completely.

Acquisition of an OoS should be repeatable in the sense that other researchers
could acquire similar objects. And it should respect the norms of ethics for the
people involved. For example, people should only participate after informed consent
and should be free to stop any time without giving reasons [1, 8, 10, 11].

11.2 Sampling

In the following, we discuss sampling for case-based studies, sampling for sample-
based studies, and the validity of the sampling procedures. Table 11.2 gives the
checklist for sampling.

11.2.1 Sampling in Case-Based Research

In case-based research, sampling is done sequentially in a process of analytical
induction. The population in case-based research is usually not crisply defined, and
we sample cases by similarity, where the similarity concept may be revised between
case studies. After defining a theoretical framework and formulating knowledge

Table 11.2 Checklist for the sampling procedure.

7.2 Construction of a sample

– Case-based research: What is the analytical induction strategy? Confirming cases,
disconfirming cases, extreme cases?

– Sample-based research: What is the sampling frame and probability sampling strategy?
Random with or without replacement, stratified, cluster? What should the size of the
sample be?

– Validity of sampling procedure

- Inference support. Which inferences would be valid with respect to this design?
See the applicable parts of the checklists for validity of statistical, abductive and
analogic inferences.

- Repeatability. Can the sampling procedure be replicated by other researchers?
- Ethics. No new issues.
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questions, a case is selected from the intended population and studied. This may lead
to an update of the theoretical framework and even a redefinition of the population
predicate. With this new theoretical framework and population predicate, a new case
is selected and studied.

Assuming sufficient research resources, this process continues, until the theoret-
ical framework can deal with all cases studied so far that are element of the final
population, and the definitions did not have to be changed after the most recently
studied case. Generalization in analytical induction is by analogy. Examples of
analytical induction are given in Chap. 15 on analogic inference.

11.2.2 Sampling in Sample-Based Research

In sample-based research, a sample as a whole is studied. For statistical inference
from a sample, you need a random sample, which is a sample selected randomly
with replacement from the population. Each time a sample element is selected, each
population element has the same probability of being selected. This means that the
sample is a multiset, as one population element may be selected more than once.

In practice, we work with simple random samples, which are selected without
replacement. After each selection, the probability of the remaining population
elements of being selected increases slightly, because the set to be selected from
has become smaller. If the population is large compared to the sample, then the
difference with random sampling is negligible, but if it is small compared to the
sample, statistical inferences must include a correction factor to compensate for the
fact that sampling was done without replacement. We give the correction factor in
Chap. 13 on statistical inference.

More complicated sampling schemes are stratified sampling and cluster sam-
pling, which are used in observational research. We will not use these here. More
information about them can be found in the literature [4, 7].

How do we actually select elements of a population? For this, we need a list of
population elements from which you can select elements, called a sampling frame.
This list often does not describe the entire population. The entire population is now
called the theoretical population, and the subset described by the sampling frame
is called the study population (see Fig. 11.2). The theoretical population may be
just as fuzzily defined as in case-based sampling.

To select a simple random sample from a sampling frame, you could enter the
sampling frame in a column of a spreadsheet, generate random numbers from the
interval Œ0; 1� in the column next to it, and then sort on the random column. The first
n rows then give you a simple random sample of size n.

Generalization in sample-based research now is a two-step process: Statistical
inference takes you from a random sample to the study population, and analogic
inference takes you from the study population to the theoretical population.
Chapter 20, on statistical difference-making experiments, gives an example.
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Fig. 11.2 Cases, samples, populations, and sampling frames

11.2.3 Validity of Sampling Procedure

Statistical inference from a sample to the study population requires random sam-
pling, with or without replacement. Random sampling is very difficult to achieve,
and there will often be a nonrandom, and therefore systematic, influence on the
sample too. This creates a systematic error.

To spell this out, suppose some variable X is defined over a population and we
repeatedly select a random sample from this population. Each time, we compute
the sample average of X . All of these sample averages are probably different, a
fluctuation that is the consequence of the fact that we are computing the average
of finite samples of randomly drawn population elements. But because we are
sampling randomly, the central-limit theorem says that these differences are random
fluctuations around the real population mean and not the effect of some systematic
mechanism in the sampling procedure. We discuss the central-limit theorem in
Chap. 13 on statistical inference. The theorem says that if we repeatedly select
random samples from the population, then in the long run, the sample means will
cluster randomly around the population mean:

Sample mean D population mean C random fluctuation:

If sampling is not fully random, then it contains some systematic mechanisms, and
the sample mean is [4]:

Sample mean D population mean C systematic displacementC random fluctuation:

An example is a statistical difference-making experiment (Chap. 20), where all
sample elements receive the same treatment, and the goal is to estimate the
systematic displacement caused by this treatment, which is called the treatment
effect. The major methodological problem here is to ensure that the treatment is
the only systematic influence on the outcome. Any mechanism other than random
selection should be accounted for in the analysis of the data, because otherwise
it will be mistakenly held to be part of the treatment effect. Examples of such
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additional treatment effects are given in Chap. 14 on abductive inference, when we
discuss threats to the validity of causal inference.

Statistical inference only deals with random part of the measurements, not
with any systematic part. The systematic displacement in the above equation is
usually called bias, and the fluctuation is usually called sampling error [4]. Both
terms are unfortunate, since they suggest prejudice and mistakes, but actually refer
to systematic displacements and random fluctuations. But they are here to stay.
Whenever I use them, I will give a warning not to misinterpret them.

If sampling is not random and not all mechanisms by which a sample is selected
are known, then it is not possible to know which systematic displacement is part
of the results. It is then not possible for other researchers to repeat the research. So
if other researchers repeat the known steps of the research, then it is not possible
to draw conclusions from a comparison of the outcomes. The replication has a
systematic displacement that is unknown and must be assumed different from the
systematic displacement in the original experiment that is also unknown:

� An example is self-selection into a sample. If students volunteer to participate
as subject in a study because of a small monetary reward, then this reward is
part of the selection mechanism and may influence the outcome systematically.
A replication with different students may show a different effect.

11.3 Treatment

11.3.1 Treatment Design

An experimental treatment is a treatment of an OoS by a researcher, performed
with the goal of finding out what the effects of the treatment are:

� Exposing a DOA algorithm to a simulated context in order to learn about its performance is an
experimental treatment of the algorithm.

� Exposing students to programs with particular kinds of program comments in order to learn about
the effects of the commenting techniques on maintainability is an experimental treatment of the
students.

Compare this with the concept of a problem treatment in the engineering cycle. A
problem treatment in the engineering cycle is the insertion of an artifact in a problem
context in order to improve something for some stakeholders. An experimental
treatment in the empirical cycle, by contrast, is the exposure of an OoS to a treatment
in order to answer a knowledge question of the researcher. The stakeholder is here
the researcher, who wants to answer a knowledge question. Both kinds of treatment
are special cases of the more general concept of an intervention.

Conceptual frameworks in statistical research often distinguish among indepen-
dent, dependent, extraneous, and confounding variables. The independent variable
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then represents the different possible treatments that can be applied to an OoS. Each
possible treatment is then one level of this variable:

� For example, in the PCL experiment, we may define the independent variable C with two possible
values PCL and no-PCL that represent the two treatments.

This is misleading. Treatments are interventions, not levels. We may view a
treatment as the action of setting the level of an independent variable, but not as
merely the resulting level. The difference can be illustrated as follows:

� Suppose in a random sample we observe different values of Y for every different value of X . So
there is some correlation between X and Y in the sample. If we were to view the different values of
X as “treatments” of Y , then we might conclude that the differences in Y are effects of differences
in X . But the correlated differences in X and Y might be the effect of differences in an underlying,
unobserved variable U . So this causal inference is not warranted by these observations.
The situation would be different if we could manipulate the values of X . Suppose we would set X

to a different value and would observe no difference in Y . Then it would have become clear that
differences in Y are not caused by differences in X . Manipulation is essential for the demonstration
of causality.

A dependent variable is a variable believed to be influenced by differences in the
independent variable. Jointly with the term “independent variable,” this suggests
that the researcher knows that changes in the independent variable cause changes
in the dependent variable. However, often, we do not know this. In their standard
work on mutltivariate statistics, Tabachnick and Fidell admit from the start that the
terminology of dependent and independent variables is used for convenience and has
no causal implication [13, p. 2]. However, this is a very misleading convenience. It
is the same as describing two people as married just because it is convenient for you
to describe them this way but without wanting to imply that they are really married.
We will use a more neutral terminology and talk of experimental treatments and
measured variables.

In the same terminology of dependent and independent variables, an extraneous
variable is any other variable than the treatment, which may or may not influence
the “dependent” variable. In a randomized controlled experiment, extraneous factors
will cancel out in the long run when we average the results of many replications
of the experiment. Confounding variables are extraneous variables believed to
influence the dependent variable. Just as all other extraneous variables, in truly
randomized experiments, these will cancel out in the long run. But often it is not
possible to randomize over all confounding variables. Then these factors will have
to be kept constant, to block their effects on the dependent variable, or else they have
to be blocked out in the computations of the statistical inference. More information
can be found in the methodological literature on statistical inference, especially on
the inference technique called ANCOVA (analysis of covariance) [3, 5].

Table 11.3 shows the checklist for treatment design. The first part of the list shows
that treatments must be specified, instrumented, allocated to sample elements, and
scheduled for delivery. There are many allocation schemes in experimental research
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Table 11.3 Checklist for treatment design.

8. Treatment design

• Which treatment(s) will be applied?
• Which treatment instruments will be used? Instruction sheets, videos, lessons, software,

computers, actuators, rooms, etc.
• How are treatments allocated to OoS’s?

– In sample-based research: blocking, factorial designs, cross-over designs? Between-
subjects or within-subject designs?

– In case-based research: Are treatments scaled up in successive cases?

• What is the treatment schedule?
• Validity of treatment design:

– Inference support. Which inferences would be valid with respect to this design? See
the applicable parts of the checklists for validity of statistical, abductive and analogic
inferences.

– Repeatability. Is the specification of the treatment and the allocation to OoS’s clear
enough so that others could repeat it?

– Ethics. Is no harm done, and is everyone treated fairly? Will they be informed about the
treatment before or after the study?

that have a major influence on causal inference. The major choice is whether or
not to randomize allocation. In a randomized controlled trial (RCT), allocation
is random, and in a quasi-experiment, it is not. Within these two options, there
are still many possibilities, leading to many different possible allocation schemes.
Some of these are discussed in Chap. 14 on abductive inference, and pointers to the
literature are given there too. Here it suffices to give an example:

� Suppose two software engineering techniques are to be compared. In an RCT, we would draw a
random sample of students and allocate the two treatments randomly to the sample elements.
If on the other hand we would allocate the techniques based on student competence measured in
a pretest, we would be doing a quasi-experiment in which the experimenter selected the subjects
into a treatment group systematically rather than randomly.

11.3.2 Treatment Validity

Treatment allocation is relevant for statistical, causal, and analogic inference. For
statistical inference, treatment allocation must be random. For causal inference, the
ideal research setup is to apply exactly the treatment and only the treatment. This
is rarely possible, and causal inference must account for all confounding influences
in addition to the treatment. For analogic inference, the applied treatment must be
similar to the treatments of the target of generalization. More on this is discussed in
the chapters on statistical, abductive, and analogic inference.
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11.4 Measurement

Measurement of a variable is the assignment, according to a rule, of a value to the
phenomenon denoted by the variable [6]:

� For example, when we measure the duration of a project, we assign a value to the phenomenon
denoted by the variable project duration. We do this according to a fixed rule. The rule could be
that we count the number of days from the kickoff meeting to the day when the final deliverable is
produced. Or it could be that we count the number of days from the day that an account number
for the project was created to the day that the account was closed. It is important to fix the rule,
stick to it, and describe it in the project report.

11.4.1 Scales

Definition of a measurement rule involves defining a measuring scale. Like a data
type, a scale is a set of values with manipulation rules. But unlike a data type, the
values and manipulation rules must have real-world meaning, and this meaning is
considered to be part of the scale:

� For example, we may decide to estimate the likelihood of an accident on a scale of 1–5 and to
estimate the impact caused by the accident on a scale from 1 to 5 too. Suppose we estimate a
particular accident to have likelihood 3 and impact 4. Using operations available in the data type of
natural numbers, we now compute the product of likelihood and impact 12. However, this product
has no real-world meaning. The real-world meaning of the two scales is that they provide an
ordering of likelihood and impact, respectively, but do not provide estimates of size. Multiplication
in these scales is meaningless.

� We may measure a software execution time in terms of seconds or in terms of milliseconds. These
are two different scales with a meaning-preserving transformation between them. For example, an
execution time of 3.000 s is an execution time of 3,000 ms. Treated as elements of the data type of
natural numbers, 3:000 ¤ 3;000, but as measurements in a scale, they are equal.

The real-world meaning of a scale is captured by the set of meaning-preserving
transformations of scale. Once we have indicated what the meaning-preserving
operations of a scale are, we know which operations can be applied in a scale,
namely, those preserved by a meaning-preserving operation [12,14]. Table 11.4 lists
a number of frequently used types of scales and gives examples:

• In a nominal scale, different phenomena are given different labels, and we can
test whether two phenomena have received the same or a different label. This test
will receive the same answer under any one-one mapping of the scale to another
scale. This shows that the names themselves are not meaningful but their identity
and difference are.

• In an ordinal scale, phenomena are given ordered labels, and in addition to
equality, we can test which order two labels have. (All examples of ordinal scales
that we will encounter are totally ordered, but other orderings are possible.)
Ordinal scales represent phenomena that have a natural ranking. Examples are
levels of (dis)agreement, order of arrival of jobs, etc.
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Table 11.4 Some well-known scales of measurement.

Scale Meaning-preserving
transformations

Permissible opera-
tions

Examples

Nominal S 0 D f .S/ where f is
any bijection

D Classifications, such as
type of software, role of
stakeholder

Ordinal S 0 D f .S/ where f

is any monotonically
increasing function

D, < Severity of impact, Opin-
ion (agreement), Order
of arrival

Interval S 0 D aS C b for a > 0 D, <, C, � Fahrenheit temperature
scale, Celcius tempera-
ture scale, calendar sys-
tem for measuring date

Ratio S 0 D aS with a > 0 D, <, C, �, �, � Execution time in sec-
onds, Memory usage in
bits, Kelvin temperature
scale

• In an interval scale, distances between numbers are meaningful, but the position
of the 0 is arbitrary. This means that the scale has a unit for addition, but not
for multiplication. Interval scales are used for phenomena that have a natural
degree of difference. Examples are Fahrenheit and Celcius temperature scales,
calendar systems as a scale to measure dates, closeness of a system to satisfying
a requirement, etc.

• A ratio scale is used for a measurement that measures how much of a unit
scale goes into the measured phenomenon. There is a zero, and the unit of
measurement is a unit of multiplication. Examples are execution time in seconds,
Kelvin temperature scale, etc.

11.4.2 Measurement Design

Table 11.5 gives the checklist for measurements. You have to define and operational-
ize your constructs, find data sources, acquire instruments, plan your measurements,
and decide how you are going to store the data once you have collected them. Con-
struct definition includes the definition of chance models for variables. Measurement
planning involves scheduling them as measurements of one state of the objects of
study (cross-sectional study) or as a historical study of a sequence of states of the
objects of study (longitudinal study). If there is a treatment, measurement planning
involves decisions about what measurements to do before and after the treatment,
called pretests and posttests. Data storage involves maintaining traceability between
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Table 11.5 Checklist for the measurement procedure.

9. Measurement design

• Variables and constructs to be measured? Scales, chance models.
• Data sources? People (e.g. software engineers, maintainers, users, project managers,

politically responsible persons, etc.), primary data (e.g. source code, log files, bug tracking
data, version management data, email logs), primary documents (e.g. project reports,
meeting minutes, organization charts, mission statements), etc.

• Measurement instruments? Interview protocols, questionnaires, video recorders, sound
recorders, clocks, sensors, database queries, log analyzers, etc.

• What is the measurement schedule? Pretests, posttests? Cross-sectional or longitudinal?
• How will measured data be stored and managed? Provenance, availability to other

researchers?
• Validity of measurement specification:

– Inference support. Which inferences would be valid with respect to this design? See
the applicable parts of the checklists for validity of abductive and analogic inferences.

– Repeatability. Is the measurement specification clear enough so that others could
repeat it?

– Ethics. Which company data must be kept confidential? How is privacy of persons
respected?

the data and the data source, called provenance, and deciding who else can use the
data. There may be a conflict between the scientific requirement that peers must be
able to check and reanalyze your data and the ethical requirements of confidentiality
and privacy.

A popular measurement approach in software engineering is Goal Question
Metric (GQM) [2]. In the framework of this book, GQM is an approach to
defining indicators to use in implementation evaluation or problem investigation.
This corresponds to a thread of three items in our checklist for the empirical cycle:

� Suppose the timeliness of change request processing must be improved [2]. The GQM approach
now corresponds to asking questions 2, 4, and 9 of our empirical cycle checklist:

2. The first step is to specify the goal:

� To improve the timeliness of change request processing from the project manager’s
viewpoint

This is a top-level improvement goal that a stakeholder wants to achieve, which corresponds
to item 2 in the checklist.

9. As a consequence of setting an improvement goal, some property of some object needs to
improve, and knowledge questions are formulated about the property. The second step is then
to ask a relevant question:

� What is the current change request processing speed?

This is a knowledge question in a problem investigation. It corresponds to item 4 of the
empirical cycle checklist.

9. To answer the question, indicators must be defined that allow one to measure the current state
and any improvement that might occur later on. This is done in step three of the GQM method.
Remember that indicators are called “metrics” in software engineering research:
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� By what metrics can processing speed be measured?

This corresponds to item 9 of our checklist. Possible metrics are average cycle time, standard
deviation of cycle time, and % of cases outside upper limit.

To summarize, the GQM approach is part of an implementation evaluation or prob-
lem investigation that is done as an observational study, following our checklist for
empirical research. The problem investigation itself is the first task in an engineering
cycle where the problem will be treated and the treatment implementation will be
evaluated.

11.4.3 Measurement Validity

Measurements are used to support inferences. The major requirement for supporting
a causal inference is that the act of measurement itself does not influence the OoS.
If influence cannot be avoided, this must be included in the causal inference. To
support analogic inference, measurements should provide information about the
measured constructs, and the measured values should be representative of the range
of values in the target of generalization. More on this in the Chaps. 14 and 15 on
abductive and analogic inference.

11.5 Summary

• An OoS is an object that is measured. Objects of study can be population
elements or models of the population elements. They must satisfy the population
predicate.

• Case-based research samples OoSs in sequence in a process of analytical
induction.

• Sample-based research studies objects in a sample all at once, where the sample
is selected according to some sampling scheme. Sampling starts from a sampling
frame that lists the study population.

• In experimental research, treatments must be specified, instrumented, allocated,
and scheduled. Treatments can be allocated randomly in RCTs or systematically
in quasi-experiments.

• Measurement requires the definition of a measurement rule and of scales. Data
sources and instruments must be selected, storage of data must be decided on,
and measurements must be scheduled.
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Chapter 12
Descriptive Inference Design

Descriptive inference summarizes the data into descriptions of phenomena
(Fig. 12.1). This requires data preparation (Sect. 12.1). Any symbolic data must
be interpreted (Sect. 12.2), and quantitative data can be summarized in descriptive
statistics (Sect. 12.3). The descriptions produced this way are to be treated as facts,
and so ideally there should not be any amplification in descriptive inference. But
in practice there may be, and descriptive validity requires that any addition of
information to the data be defensible beyond reasonable doubt (Sect. 12.4).

12.1 Data Preparation

Data preparation is the transformation of the data into a form that makes it easier
to process. It may involve transcription of interviews in written text, entering data
into a database for qualitative or quantitative data analysis, transforming scales
to facilitate quantitative analysis, removal of outliers, removal of records with
missing data, and cleaning up primary data. Usually, it involves some amount of
interpretation:

� For example, when transcribing an interview, you may interpret pauses, tone of voice, inaudible
words, etc.

� When collecting returned questionnaires, you may judge some of them unusable and put them
aside.

� When analyzing a database with software maintenance data, you may have to remove incorrect or
incomplete records from the database. This involves some judgment.

In quantitative research, part of data preparation is the removal of outliers.
The goal is to remove measurements that cannot possibly represent the measured
phenomenon but must be the result of measurement mistakes. Any data point
could be the result of a measurement mistake, including the data points that look
normal. Outliers are conspicuous data points that deviate from the crowd of data

© Springer-Verlag Berlin Heidelberg 2014
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Fig. 12.1 Descriptive inference produces descriptions of phenomena from measurement data

Table 12.1 Validity of data preparation

• Will the prepared data represent the same phenomena as the unprepared data?
• If data may be removed, would this be defensible beyond reasonable doubt?
• Would your scientific opponents produce the same descriptions from the data?

points. They can be removed if there is no conceivable way in which the measured
phenomenon could have produced such a measurement:

� In the MARP simulation, scenarios with a low rate of low-duration incidents show a delay close to
zero. Suppose one agent had experienced a delay of 10 min in such a scenario, whereas all others
had a delay close to zero. Then the researcher would have investigated this scenario to see what
happened to this agent. He would have investigated simulation log files and possibly execution
traces to see if this is an anomaly of the simulation or a true consequence of the route planning
algorithm. If it would have been a simulation error, this data point would have been removed as an
outlier. But if it would have been a true consequence of the route planning algorithm, it would have
been an informative data point to be included in the observations.

� Suppose that in a software engineering experiment, the programming productivity of subjects is
measured. Suppose all subjects produce between 10 and 30 lines of code per hour, except one,
who produces 50 lines of code per hour. Just as for the route planning agents, the researcher
would like to know whether this is a measurement error or some other artifact of the experiment
that does not represent the phenomenon to be measured. Is there a mechanism in the object of
study that could have produced this measurement? There are no brain dumps of the subject to
analyze. Cognitive psychology or brain science does not provide any arguments to exclude the
possibility of this measurement either. So the outlier cannot be removed.

Data preparation is valid if it does not change what phenomena are described
by the data. A change of scale does not change what phenomena are represented;
removal of an outlier changes what phenomena are represented, unless the outlier
could not possibly represent a phenomenon. We return to the validity of outlier
removal in Chap. 13 on statistical inference.

The validity questions listed in Table 12.1 ask about validity with respect to the
phenomena and defensibility with respect to the peer group. This corresponds to
the two criteria of scientific research mentioned in Chap. 9: empirical testing and
justification to a peer group.
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12.2 Data Interpretation

Symbolic data, such as interview transcripts, log files, databases, or video material,
needs to be interpreted. This must be done by people according to an explicit inter-
pretation method. Three popular interpretation methods are conceptual analysis,
content analysis, and grounded theory. What follows is a very brief description
of these methods. Denscombe [2] gives useful short summaries of many methods,
including grounded theory and content analysis. Robson [8] describes less methods
but gives more information about each. Other useful sources are Miles et al. [5] and
Patton [6].

• In a conceptual analysis of documents, you search for examples of entities,
events, processes, procedures, constraints, taxonomic relations, composition
relations, cardinality relations, etc., that are defined in the conceptual framework
of your research. These examples are interpretations of the symbolic data in terms
of your conceptual research framework. They look like stories about the OoS that
illustrate your research concepts:

� Warne and Hart [10] report an observational case study of organizational politics in an
information systems development project. Relevant concepts from their conceptual framework
are alignment with business needs, top management support, and user involvement. They give
illustrations of these concepts by summarizing some phenomena in the case, illustrated by
some quotes from participants in the case. These and other concepts are used to interpret
and analyze the otherwise unstructured mass of textual data about the case. They used their
conceptual framework to analyze the case.

• In content analysis, you start from your conceptual research framework but
add concepts found in the interpretative analysis. The interpreter breaks down
a textual or multimedia document in smaller units, develops relevant categories
for classifying the data, and codes the units in these categories. These categories
are added to the conceptual research framework in terms of which the phenomena
are interpreted and analyzed. The set of categories can be treated as a nominal
scale, and the number of times a category appears in a unit of the document can
be counted:

� Karlström and Runeson [3] report on an observational case study of extreme programming
practices in a project, which was part of a larger project that was structured into a number of
stages performed sequentially, with a decision point between stages. They interviewed project
participants about their experience with using an extreme programming practices within a larger
stage-gated project. Interviews with subjects were transcribed, coded, and analyzed by two
researchers independently from each other, and any differences between the analyses were
resolved to produce a set of concepts extracted from the interview transcripts. The concepts
identified from the interviews were added to their research framework.

• In grounded theory, the interpreter tries to bracket his or her own conceptual
framework, which means that he or she tries not to use it. The interpreter then
explores the symbolic data by reading, listening to, or watching the text and
multimedia documents several times. Any interpretation emerging from the text
is written on a memo, one memo per interpretation decision. Next, codes for
pieces of the document are developed, and these are classified into categories.
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Table 12.2 Validity of interpretations

• Will the interpretations that you produce be facts in your conceptual research framework?
Would your scientific peers produce the same interpretations?

• Will the interpretations that you produce be facts in the conceptual framework of the
subjects? Would subjects accept them as facts?

These are organized in a network, and concepts and hypothesis are extracted.
At every step, the interpretations of the interpreter must be checked against
the recorded data. The result is a conceptual framework that the interpreter has
found embedded in the documents. The researcher may also extract relationships
between concepts from the documents, which constitute a theory about the world
that was found embedded in the documents:

� Racheva et al. [7] analyzed interviews with developers about requirements prioritization in
agile software projects. The interviews were analyzed using the grounded theory approach of
Charmaz [1]. This resulted in a conceptual model of agile requirements prioritization, including
a model of the stages of requirements engineering and of some of the factors that influence the
decisions made in each stage. This conceptual framework and theory about agile requirements
prioritization was extracted from the interviews, and it was not part of the research framework
that the authors started with.

To improve consistency of the interpretation, the interpretation rules developed
during the analysis should be written down and followed once written down. In
some cases, the rules must be automated:

� For example, analyzing email logs or bug report databases must be automated due to the amount
of data to be interpreted, and hence the interpretation rules are specified in an automatable form.
In general, you may use database queries, log analyzers, and text processing software to analyze
primary data and primary documents.

The bottom line of the validity question in data interpretation is whether you have
identified facts or not. Table 12.2 lists the two criteria for this.

There are several ways to increase the support for, and hence the validity of, your
interpretations:

• Triangulation is the use of multiple, independent ways of producing your
interpretation. For example, you can use multiple independent data sources,
multiple independent methods to collect the data, and multiple researchers
to interpret the data independently from each other. Differences between the
interpretations produced must be analyzed and resolved.

• In member checking, you check the interpretations with the subjects themselves.
• In peer debriefing, you submit the interpretation process to independent sci-

entific peers for critical analysis. This is facilitated by keeping an audit trail of
decisions that you made during the interpretation process.



www.manaraa.com

12.3 Descriptive Statistics 139

12.3 Descriptive Statistics

Statistics are quantitative summaries of data. Examples of descriptive sample statis-
tics are the mean and variance of a variable in a sample and the correlation between
variables in a sample. Descriptive statistics usually includes data visualization using
box plots, scatterplots, bar graphs, pie charts, graphs, etc. Using powerful graphics
processors, data visualization has become a discipline on its own, which goes far
beyond visualizing descriptive statistics. We will not discuss data visualization
techniques in this book and define only two descriptive statistics that we will use
in statistical inference later.

For descriptive and inferential statistics, I follow the notation of Wasserman [11].
We use upper case letters X , Y , . . . to indicate random variables and lower case
letters x, y, . . . to denote arbitrary values of those variables. In Chap. 8, we saw
that the chance model of a variable defines an X -box, which is a box with tickets
that have measurements written on them. The value written on a particular ticket is
denoted x. For a variable X , we define the sample X1; : : : ; Xn as a set of variables
that have the same distribution as X . A draw from the X -box gives a set of tickets
that contains values x1; : : : ; xn.

If X has an interval or ratio scale, the sample mean is itself a random variable,
denoted Xn, defined as the arithmetic mean:

Xn D 1

n

nX

iD1

Xi :

The sample variance is another random variable, defined as

S2
X;n D 1

n � 1

nX

iD1

.Xi � Xn/2:

SX;n is called the sample standard deviation of X . Sample mean and variance are
the basic statistics used in statistical inference in the next chapter.

If you made no computation mistake, then the mean and variance of sample are
valid: They are the mean and variance of a finite multiset of numbers. But to count
as descriptive statistics of a measured sample of a population, a chance model must
be defined (Table 12.3). This imposes two requirements on the sampled objects
of study: They must satisfy the population predicate, and the variables must be
observable properties of the objects of study.

Table 12.3 Validity of descriptive statistics

• Is the chance model of the variables of interest defined in terms of the population
elements?
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12.4 Descriptive Validity

Descriptive validity is the degree of support for a descriptive inference. Some
methodologists call it factual accuracy [4, p. 285], and some call it credibility [9].
The checklists in Tables 12.1, 12.2, and 12.3 jointly form our checklist for
descriptive validity. They are written in the future tense, which is the point of view
that you have during research design. This is useful for planning your measurement
procedures and for acquiring the resources to do descriptive inference.

After you completed the data collection, when you start data analysis, these
questions have to be answered again, but now in view of the events that happened
during the study.

12.5 Summary

• Data preparation is the transformation of data into a form that makes it easier
to process. It may involve transcription and coding of symbolic data, changes
of measurement scale, and removal of outliers. The result must still describe
observed phenomena and no other phenomena.

• There are several methods for interpreting symbolic data, such as conceptual
analysis, content analysis, and grounded theory. Interpretation must be done as
intersubjectively as possible, so that different interpreters would assign the same
interpretation to symbolic data and would treat the result as descriptions of facts.

• Description of sample statistics requires a chance model of the variables that are
described.
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Chapter 13
Statistical Inference Design

Statistical inference is the inference of properties of the distribution of variables
of a population, from a sample selected from the population (Fig. 13.1). To do
statistical inference, your conceptual research framework should define the relevant
statistical structures, namely, a population and one or more random variables
(Chap. 8, Conceptual Frameworks). The probability distributions of the variables
over the population are usually unknown. This chapter is required for Chap. 20 on
statistical difference-making experiments, but not for the other chapters that follow.

There are many statistical inference techniques that all have at least these three
shared elements: They start from sample measurements, they make an assumption
about how the sample is related to the population, and they infer a property of the
population distribution of one or more random variables. The property is called a
statistical model (Sect. 13.1).

Statistical inference is based on the central-limit theorem (CLT), which says that
the distribution of the means of samples selected randomly from a distribution varies
normally around the distribution mean. We explain this informally in Sect. 13.2.

There are two classes of inference strategies: statistical hypothesis testing and
statistical parameter estimation. In statistical hypothesis testing, you hypothesize
one or more statistical models and, for each model, test the probability of the
data given that model. Based on this, you make a decision about the models. We
review three techniques for statistical hypothesis testing in Sect. 13.3. In statistical
parameter estimation, you do not start with a hypothesis but directly estimate a
property of the statistical models that best accounts for your data statistically. There
are many estimation techniques, and in Sect. 13.4 we look at one, namely, estimation
of a confidence interval for the population mean of a variable.1

Statistical hypothesis testing is used widely in the social sciences, but it is also
much criticized because its use can be accompanied with reasoning mistakes and
meaningless results. The conclusion of Sect. 13.3 is very critical about statistical
hypothesis testing, and in Sect. 13.4 we will see that confidence interval estimation
is a more informative and uncontroversial alternative. So why treat hypothesis

© Springer-Verlag Berlin Heidelberg 2014
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Fig. 13.1 Statistical inference is the inference of properties of the probability distribution of variables

testing at all? Because it is needed to read the many research papers that do use
the statistical hypothesis testing techniques discussed here.

Statistical inference of whatever kind is fallible. In Sect. 13.5, we discuss the
validity of inferences from samples to statistical models and give a checklist for
assessing statistical conclusion validity of estimating confidence intervals.

13.1 Statistical Models

A statistical model of the distribution of one or more random variables is some
characteristic of their (joint) distribution (Fig. 13.2). Examples of statistical models
are the distribution mean and variance of a random variable and the correlation
between two random variables.

A statistical model needs a chance model in order to give information about
a population. The chance model defines the meaning of a random variable in
a population, contains assumptions about the population distribution of X , and

Study popula�on X-Box

Sta�s�cal inference

3 2

36 3 6

4

Sta�s�cal model
of distribu�on of X

in the X-box

Sample selec�on

33 6

4
Abstrac�on
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Fig. 13.2 A chance model for X abstracts away almost all properties of a population and leaves us
with a box with tickets, on which values of X are written. The numbers on the tickets are values of X on
population elements. The distribution of values in the box is usually unknown. In statistical inference,
we use the values found in a sample that is drawn randomly from the box to draw conclusions about a
statistical model of the distribution. The model may, for example, give us information about the mean of
the distribution of X . Using the chance model, we can interpret this in the population. With a different
chance model, the statistical model would have a different meaning in the population
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contains information about measurement and sampling procedures. A chance model
abstracts away all physical properties of a population and leaves us with a box
with tickets, where each ticket stores the value of X in a population element. The
numbers on the tickets in the box have a probability distribution. The starting point
of statistical inference is a sample of tickets drawn randomly from this box.

In Chap. 8 (Conceptual Frameworks, p. 81), we have given two examples of
chance models. We now extend these examples with statistical models:

� Huynh and Miller [32] studied implementation vulnerabilities in open-source web applications. They
defined a random variable ImpV that stands for the proportion of implementation vulnerabilities
among all vulnerabilities in a web application. The chance model of this variable defines the
meaning of this variable, makes an assumption about its distribution, and describes how it is
measured. The authors do not state how a sample is selected, and they proceed as if the sample
were selected randomly. They measured ImpV in a sample of 20 web applications. From this, they
used statistical inference to estimate the mean 	 and standard deviation 
 of the distribution of
ImpV. These are statistical models of ImpV. Using the chance model, this provides information
about the mean number of implementation vulnerabilities in open-source web applications and
about the variance around this mean.

� Hildebrand et al. [30] studied the preferences of consumers who customized a mass-configurable
product, both before and after they received feedback from a peer on a social network. They defined
the random variable Pref�i;j as the difference between the initial preferences of consumer i and
the feedback received from peer j and the aggregate deviation index ADIi as the distance between
the initial and final preferences of consumer i . Each consumer i received feedback from only one
peer j , so the index j is superfluous. They defined chance models for these variables, in which
they assumed that Pref�i;j is normally distributed. They measured these variables in a sample of
149 consumers and treated this sample as a random sample. They hypothesized a parameterized
statistical model of the relationship between the two variables, namely, ADIi D ˛Cˇ�Pref�i;j , and
estimated the coefficients ˛ and ˇ from their data. This is their statistical inference. The resulting
equation, with estimated coefficients, is their statistical model of the relation between ADIi and
Pref�i;j .

13.2 The CLT

We now forget about the population and only talk about the distribution of the
values of a random variable in a box of tickets. Statistical inference derives
information about the distribution of the variable from a finite sample of tickets
selected randomly from the box. This is possible, thanks to two powerful results
in mathematical statistics, the law of large numbers (LLN) and the CLT. The LLN
says that the mean of a random sample of values of a variable X approximates
the distribution mean of X when the sample gets larger. The approximation gets
more accurate when the sample gets larger. The CLT says that the means of
random samples of the same size are approximately normally distributed around
the distribution mean and that the approximation gets better when the sample size
gets larger. The following paragraphs introduce the core concepts and show how
they can be used. A useful mathematical introduction is given by Wasserman [51].
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13.2.1 Distribution Mean and Variance

We assume that X has at least an interval scale and define the mean and variance of
the distribution of X intuitively as follows:

• The distribution mean 	X is the mean of the numbers on the tickets in the X -box.
(A number can be counted more than once, because it can be on more than one
ticket.)

• The distribution variance 
2
X is the mean of the squared differences between the

numbers on the tickets and 	X . We call 
X the standard deviation of X .

	X and 
X are parameters of the distribution of X . If there is no danger of confusion,
we drop the suffix X .

There are examples of distributions that do not have a mean [51, p. 48] and
hence no defined variance, but the distributions that we work with can be assumed
to have one.

13.2.2 Sampling Distribution, Mean, and Variance

A random sample selected from a X -box is denoted X1; : : : ; Xn. The sample mean
Xn is a random variable too, and it has its own box model that we call an Xn-box.
This box contains the means of all samples of size n selected randomly from the X -
box. The distribution of numbers in the Xn-box is called a sampling distribution,
and it has a sampling mean and sampling variance.

It can be proven that the sampling distribution of Xn has the same mean as X

and that its variance is 1=n times that of the parent distribution:

• 	Xn
D 	X

• 
2

Xn
D 
2

X =n

So the sample means vary around 	X with a variance that gets smaller when the
samples get larger. This is the basis of statistical inference, because it implies that
we can estimate a population mean from a sample mean, with an accuracy that
improves with sample size.

The above theorem assumes random sampling (with replacement). If we draw
simple random samples from the same population, then we need to apply a
correction factor if the population is finite. Simple random sampling does not
replace the sampled elements, and if the population is small compared to the sample,
this may produce a noticeable reduction of the variance of the sampling mean. Each
removal of an element from the population removes some of the variance in the
population. If V.Xn;simple/ is the variance of the mean of a simple random sample
and V.Xn;random/ the variance of the mean of a random sample, then for a population
of size N and a sample of size n, the correction is [20, p. 368]
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V.Xn;simple/ D N � n

N � 1
� V.Xn;random/:

Here are a number of correction factors for a sample size of 30:

Sample size Population size Correction factor Correction factor
for variance for standard deviation

30 1,000 0.97 0.99
30 100 0.71 0.84
30 50 0.41 0.64

We will apply these correction factors for simple random samples from small
populations.

13.2.3 Normal Distributions

A normally distributed variable with mean 	 and standard deviation 
 has a
probability distribution with a shape as shown in Fig. 13.3. The curve shows a so-
called probability density, which tells us something about the probability of the
event that X � x. If we select a ticket from the X -box, then the event that the value
on the ticket is � x is denoted X � x. The probability that this happens is denoted
P.X � x/. In a probability density curve, P.X � x/ is the area under the curve to
the right of x. For example, if the values in the X -box are symmetrically distributed
around 	X , then P.X � 	X / D 0:5.

As suggested by the figure, if X is normally distributed, then about two-thirds
(68 %) of the tickets in the X -box have a value less than 
X away from 	X , and
about 95 % of the tickets have values less than 2
X away from 	X .

μ 

σ

68%

95%

99%
σσσσ σ

1.96σ 2.58σ

Fig. 13.3 The shape of normal distributions. The numbers are approximate. The figure does not show
that any value more than 3
 away from 	 is possible, although these values happen very rarely
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13.2.4 The CLT

Consider an X -box with mean 	X and variance 
2
X . This defines the set of Xn-

boxes for all n. Each Xn-box contains the sampling means of random samples of
size n from the X -box. If we put the Xn-boxes in sequence of increasing n, the
central-limit theorem (CLT) says that

the sampling distribution of Xn approaches a normal distribution with mean 	 and variance

2=n when n gets larger.

In other words, the further we go down the sequence of Xn-boxes, the closer the
distribution of tickets in the box approximates a normal distribution. We already
knew that 	Xn

D 	X and 
2

Xn
D 
2

X =n. The CLT adds a convergence result,
namely, that the sampling distribution approaches a normal distribution as the
sample size increases.

Figure 13.4 illustrates the CLT. If we sample repeatedly from an arbitrary
distribution with mean 	 and standard deviation 
 , then after a finite number
of repetitions the distribution of sample means will start resembling a normal
distribution. For small sample sizes, the resemblance is very bad, but for larger
samples, the resemblance gets better. At the same time, the variance of the sample
means gets smaller when the samples get bigger. In general, if we double the sample
size, the variance of the sample means is halved.

x

μ 

μ 

x

_
n

σ

σ/√n 

a

b

Fig. 13.4 An arbitrary distribution with mean 	X and standard deviation 
X . The CLT says that the
means of samples of size n have approximately a normal distribution with mean 	X and standard
deviation 
X =

p
n. The approximation gets better for larger n. (a) Arbitrary distribution with standard

deviation 
 . x is a measurement. (b) Normal distribution with mean 	 and standard deviation 
=
p

.n/.
The means Xn of random samples of size n from any distribution with a finite mean and standard
deviation, approximate this normal distribution. xn is the mean of one sample
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The CLT is a remarkable theorem because no assumptions are made about the
distribution of X other than that it has a mean and variance. The price to be paid
is that we must select samples randomly (with replacement) and must be able to
sample from the same distribution an indefinite number of times.

We can use the CLT to approximate the real distribution of Xn with a normal
distribution. At what sample size can we do this? In other words, at what sample
size does the distribution of Xn get close to a normal distribution? That depends on
the distribution of X and on what can be considered “close.”

The distribution of X is usually unknown. It has been shown that for some
distributions of X and for some applications of the CLT, the distribution of Xn

is close enough to a normal distribution already when n D 30. However, if the
distribution of X is heavy at the tails or nonsymmetric or has several peaks, sample
sizes must be much larger for Xn to be treated as close to normally distributed.
The sample size may have to be several hundred before the distribution of Xn can
be treated as close to normal. There are freely available simulations of the CLT on
the web that show you what happens for different distributions of X and different
sample sizes.2

13.2.5 Standardization

The CLT says that the sampling distribution of the mean converges on a normal
distribution but does not say which normal distribution. Each different 	 and 


define a different normal distribution. To make the use of the CLT easier, we
standardize variables and work with a standardized normal distribution, of which
there is only one. It has mean 0 and standard deviation 1. A variable that has the
standard normal distribution is usually denoted Z.

By convention, z0:025 is the value of Z which cuts off 2.5 % of the area under
the standard normal curve at the right tail of the curve. So P.Z � z0:25/ D 0:25.
Looking at Fig. 13.3, we see that z0:025 � 1:96. The area cut out by the interval
.�z0:025; z0:025/ is 0.95, which is another way of saying that 95 % of the tickets in
the Z-box have a number in this range.

For every random variable X with mean 	X and standard deviation 
X , we can
define a standardized counterpart ZX by the linear transformation:

ZX D X � 	X


X

:

ZX does not necessarily have a normal distribution. If the distribution of X is
unknown, then so is the distribution of ZX . But we know that ZX has a similar
distribution to X , scaled so that it has mean 0 and standard deviation 1. Importantly,
ZX is a dimensionless number that expresses the size of X using 
X as unit.
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The sampling distribution of Xn can be standardized too and is

ZXn
D Xn � 	X


X =
p

n
:

This is called the z-statistic of the sample. The CLT says that

the distribution of ZXn
approaches the standard normal distribution as n gets larger.

13.2.6 The t-Statistic

We would like to get rid of the 
 , which is usually unknown. We can do this by
estimating 
 by sample standard deviation Sn. This gives us the t-statistic of a
sample, defined by

TXn
D Xn � 	

Sn=
p

n
:

Happily, the CLT still holds for the t-statistic:

The distribution of TXn
approaches the standard normal as n gets larger.

But the approach is slower because it uses sample-based estimations of 
 .
The CLT tells us what happens when sample sizes get arbitrarily large, but in

practice we can only draw small samples. For statistical inference, the following
theorem is important, because it gives us the exact distribution of the mean of small
samples of normally distributed variables:

If X is normally distributed, then TXn
has a so-called tn�1 distribution, which is a

t -distribution with n � 1 degrees of freedom.

tn�1 distributions resemble a standard normal distribution but are fatter at the
tails (Fig. 13.5). The probability that TXn

is far away from the mean is larger than it
is for the standard normal distribution, and this difference is noticeable for small n.

The above theorem says that for normally distributed X , the distribution of Xn

is a t-distribution with the appropriate number of degrees of freedom. Starting
from about n D 100, probabilities estimated with the tn�1 distribution closely
approximate those estimated with the standard normal distribution. If n > 100,
the probabilities estimated with t and with z are equal in the first two decimals.

Note that we have two approximations here: Regardless of the distribution of
X , the unknown sampling distribution of ZXn

approximates the standard normal
distribution when n ! 1. For some distributions of X , the approximation is
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The standard normal distribu�on

A t distribu�on

x

Fig. 13.5 t -distributions are lower at the peak and fatter at the tails than the normal distribution. tk

approximates the normal distribution as k ! 1. For our purposes, the approximation is already close
when k D 100

already close when n D 30. For others, the approximation gets close only for large
values of n.

The second approximation is that TXn
! Z as n ! 1. The distribution of TXn

is the exact distribution of ZXn
when X is normally distributed. For our purposes,

the distribution of TXn
is very close to the standard normal distribution already when

n D 100.
If T has a tk distribution, then by convention, tk;0:025 denotes the value of T that

cuts off 2.5 % of the area under its distribution at the right tail. tk;0:025 has different
values for different degrees of freedom k. There are tables and web applications of
the tk distribution for different values of k that allow you to look up P.T � t/ for
given values of t and k and to look up the value of t for which P.T � t/ D p, for
given values of k and p.3

If a sample size is less than 100 and we want to use a t-test, we must make a
normality assumption. How do we know whether the distribution of X is normal?
The Kolmogorov–Smirnov and Shapiro–Wilk tests test whether a random sample
could have been selected from a normal distribution, but these tests do not give
certainty. They are hypothesis tests, which you may not want to use after reading
the next section.

If the distribution of X is nearly symmetric (has a mean close to the center of
the distribution) and has only a single peak, it is customary to use a t-distribution to
describe the sampling distribution of Xn when n < 100.

Still talking about samples less than 100 elements, what if we know that the
distribution of X is not nearly symmetric or has more than one peak? Or if we
do not know anything about the distribution of X? In these cases, you should
use methods that do not make a normality assumption, such as nonparametric
or computer-intensive methods. Cohen [13], Wasserman [51], and Wilcox [52]
give useful information about these methods. Here we proceed on the sunny
day scenario that the distribution of X is normal or the sample size is larger
than 100.
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13.3 Testing a Statistical Hypothesis

There are three strategies to test statistical hypotheses. In Fisher significance testing,
we test a single statistical hypothesis and try to explain the result. In the Neyman–
Pearson hypothesis testing, we decide which of two or more hypotheses are to
be taken as true in a series of tests, optimizing our error rate. In null hypothesis
significance testing (NHST), both strategies are combined, and used to test a null
hypothesis of no difference.

13.3.1 Fisher Significance Testing

Statistical significance testing was developed by the statistician Ronald Fisher in
the 1920s based on earlier work by Karl Pearson and William Gosset [19, 23, 33].
Statistical significance tests can be done for any statistical hypothesis, including
hypotheses about distribution means, correlations, regression coefficients, and other
statistical models. The methodology of significance testing is the same for all these
statistics, and here we only discuss statistical significance testing for distribution
means. Significance testing is very controversial [29, 41], and what follows is what
I consider to be a valid version that stands up to the critique. I briefly summarize
some main points of criticism at the end of this section.

The goal of significance testing is to see if sample data provide evidence against
a statistical hypothesis. Hence, the hypothesis is called the null hypothesis, because
our aim is to “nullify” it.

p-Values

Suppose we do not know the distribution mean and variance of X and we formulate
the statistical hypothesis that

H0 W 	X D 	0

for some value 	0. We know from the CLT that the sample means drawn from the
X -box can be approximated by a normal distribution. If H0 is true, then this normal
distribution has mean 	0 as in Fig. 13.6. The approximation for large samples is
better than that for small samples.

If we observe sample mean xn, then the probability to observe a sample mean at
least as large as xn from 	0 is

P.Xn � xn/:

We do not know this probability, as we do not know the real distribution of Xn. But
if we assume that H0 is true, then according the CLT we can approximate it with
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0
_
xn

Right-tailed p-value

Observed
sample mean

μ

Fig. 13.6 Statistical significance tests using a normal distribution of sample means. The normal curve
with mean 	0 and standard deviation 
X approximates the random fluctuations that the sample mean
would have around the distribution mean 	0, if H0 is assumed to be true. The approximation is better for
larger samples. If H0 is true, the right-tailed p-value estimates the probability that xn or a larger value
of the sample mean is observed

P	0;
2
X

.Xn � xn/;

where P	0;
2
X

is the probability computed using a normal distribution with mean 	0

and variance 
2
X . The approximation gets better for larger n.

But we do not know 
X , and so we cannot compute this probability. To get rid
of 
X , we first standardize the variable, still assuming that H0 is true. The above
probability is then equal to

P0;1

 
Xn � 	0


X =
p

n
� xn � 	0


X =
p

n

!

;

where P0;1 is the probability computed using the standard normal distribution. Now
we can compute the probability, but the event between brackets cannot be detected,
because we do not know 
X .

Next, we transform to the tn�1 scale with

TXn
D Xn�	0

Sn=
p

n
and txn

D xn�	0

Sn=
p

n
:

The event TXn
� txn

can be detected, and if H0 is true, it approximates the event
Xn > xn that we are interested in. Moreover, if X is normally distributed, its
probability can be computed using the tn�1 distribution. And if X is not normally
distributed but n > 100, its probability can be approximated using the tn�1

distribution. Either way, the probability:

Ptn�1 .TXn
� txn

/;
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approximates the probability P.Xn � xn/ we are interested in, where Ptn�1 is
computed using the tn�1 distribution. It is called the right-tailed p-value of xn

under H0.
To sum up, if H0 is true and if X is normally distributed or n > 100, the

right-tailed p-value approximates the probability that P	0;
2
X

.Xn � xn/, which

approximates P.Xn � xn/, the probability to observe a sample mean at least as
large as xn. The approximations get better as n gets larger.

The left-tailed p-value of xn under H0 is defined in an analogous manner. The
two-tailed p-value Ptn�1 .jTXn

j � jtxn
j/ approximates, if H0 is true, the probability

to observe a sample mean at least as far away from 	0 as xn is. The two-tailed
p-value of a statistic is twice the one-tailed p-value. Unless otherwise stated,
henceforth p-values are right-tailed p-values.

Statistical Significance

It is customary to call an observed sample mean xn statistically significant if its
p-value is 5 % or lower. This is a very misleading term, as a single p-value is not
significant at all. Rare events do happen. So what?

What would be remarkable is if, on repeated random sampling from the same
distribution with a mean of 	0, all values of xn would have a low p-value. Such a
sequence of events would be very rare if 	X D 	0. It would then be reasonable to
conclude that 	X 6D 	0.

But Fisher significance testing is usually done without replication. How then can
we draw a conclusion from a single occurrence of a sample statistic?

Explaining Low Statistical Significance

In order to draw a conclusion from a single significance test, we have to explain
it. Explanation is an ampliative inference in which we use our prior knowledge,
and knowledge of the research setup, to explain an unusual observation or more
precisely an observation that would be unusual if H0 were true. In the next chapter,
we discuss explanations in terms of causes, mechanisms, or reasons. Here, we
discuss statistical explanations. A statistical explanation accounts for the data by
showing how it results from statistical properties of sets of numbers such as mean
and variance of the numbers in the set. For example, the statistical explanation of
the small variance of the means of large random samples is provided by the CLT.
It is not a property of the real world but is a consequence of the fact that we select
large sample randomly from the same population.

There are three possible explanations of a low p-value [24, 26]:

• H0 is false.
• The hypothesis is true, and the observed sample mean is a random fluctuation

around the true population mean 	0.
• The observed sample mean is an outlier.
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The first two explanations are statistical, because they explain a p-value in terms
of properties of a distribution mean and the standard normal curve. They are
mutually exclusive because they say that H0 is false and true, respectively. The
third explanation is not a statistical explanation, because it says that there is a
measurement mistake. This explanation says nothing about the truth or falsehood
of H0; it simply says that the measurements cannot be used. We now discuss these
three options in more detail.

H0 Is False

If H0 is false, then the distribution mean of X is not 	0. Our statistical explanation
of the low p-value is that it is a wrong p-value, because it is computed under a
wrong assumption. If the real distribution mean is different, then the real p-value
is different too. Note that if H0 is false, we do not know the real distribution mean,
and so we do not know the real p-value of Xn � xn, not even an approximation of
it. It might be lower or higher than the p-value that we computed on the assumption
that H0 is true.

H0 Is True

If H0 is true, then the distribution mean of X is 	0, and we computed the true
p-value of the event Xn � xn. If this p-value turned out to be low (i.e., statistically
significant), then we have made an unusual observation. This is improbable but
possible. Our statistical explanation of the low p-value is that the sample mean will
fluctuate randomly around 	0 and that occasionally, we will observe improbable
sample means. The best way to test this explanation is to draw another random
sample from the same population, in other words to repeat the study.

Outliers

The third option is compatible with both truth and falsehood of H0, because it says
that the measurement is wrong. An outlier is a measurement that is a mistake of the
researcher, caused, for example, by an incorrect use of a measurement instrument, an
incorrect reading, a mistake in a computation, an error in a measurement instrument,
etc. [48, pp. 278–280]. If a measurement is treated as an outlier, it is discarded
because it injects a foreign element in a mass of measurements. It adds a ticket to
the sample that was not in the X -box.

How do we identify outliers? To see this, we have to consider the possible sources
of variation in sample means. The statistical explanation for random fluctuations of
the observed sample means xn around the distribution mean 	X is mathematical:
The mean of a finite sample will not be exactly equal to the distribution mean. But



www.manaraa.com

156 13 Statistical Inference Design

why do the numbers in the X -box differ in the first place? If they would differ less,
then the fluctuations of xn around 	X would be smaller.

If we are measuring a property X of population elements, then we are faced
with the diversity of population elements, which probably all have a different value
for X . Our measurement will also be influenced by interactions among the parts
of the measurement instruments and by interactions between the instruments and
the researcher and the research setup. The world, including our research setup, is
full of ambient correlational noise by which repeated measurements of the same
property differ [37]. The fluctuations of the sample means about the true distribution
mean 	X are created by sampling error and by ambient correlational noise in the
real world. This may create unusual observations, such as a sample mean with a
probability of less than 5 %.

These unusual observations are not outliers. They are normal but rare events.
Outliers, by contrast, are mistakes of measurement in which the connection between
a measurement and the measured phenomenon has been lost or at least is different
from the way all other measurements are connected to phenomena.

Mistakes may produce data that are widely out of range, but not all out-of-
range data are necessarily produced by mistakes. Judgment whether something is
an outlier is sometimes subjective. There may be clear outliers that could not have
possibly be produced by sampling error or ambient noise. But there are sometimes
measurements of which it is not clear if they are instances of random fluctuations
about 	X or of measurement mistakes. The advice that the great mathematician
Carl Friedrich Gauss gave to the astronomer Heinrich Wilhelm Olbers in 1827 is
useful [48, pp. 279–280]:

In that case one should proceed as one thinks correct, but—and this is a law—one should
not conceal anything, so others can make their own calculations. : : : Cases like these are
analogous, it seems to me, to making decisions in everyday life. One has rarely or never
mathematical rigor and certainty, and has to be satisfied to act according to one’s best
judgment.

Choosing an Explanation

So far, we have three possible explanations of a low p-value: H0 is false, or H0

is true, but we have observed a rare event, or we made a mistake. How to choose
between these explanations? This depends in part on our prior knowledge. If there
is almost no reason to believe H0 in the first place, then in the face of a low p-value
it would be rational to conclude tentatively that H0 is false.

If we had very strong reasons to believe H0 in the first place, then a low p-value
may not put a very big dent into the support for H0. The conclusion could be that H0

is true, and we have made a rare observation. If we had a sufficient research budget,
we could replicate the research with a fresh randomly drawn sample to see if we
again observe an event that would be improbable if H0 were true. Such a replication
with a low p-value would be stronger evidence against H0. It should prompt us to
reconsider the reasons why we believed H0 in the first place.
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The situation may not be so clear-cut as the previous two paragraphs suggest,
because H0 may be supported by a complex argument. We may have hypothesized
a distribution mean 	0 that is produced by the phenomenon of interest plus any
systematic deviations introduced by our measurement instruments, research setup,
and other relevant factors that we could think of. The computation of 	0 then has
many components, some of which may be well supported and others of which may
be very badly supported. Did we really have a random sample? If we used a t-test,
is X really normally distributed? If it is nearly normally distributed, how close is
it? How do we know? Are the instruments correct? Were they used correctly? Did
anything happen during the experiment that could have influenced our results?

What we are really testing in a hypothesis test is a theory of the phenomena and
of the research setup. Which part should we give up if we repeatedly find a low
p-value? This is abductive reasoning, in which we try to explain the measurements
causally, architecturally, or rationally. We return to this in Chap. 14 on abductive
inference. Here we look at an example of the Fisher significance testing:

� Suppose company WorldCorp considers to take over a software development firm high quality
software, HQ for short. As part of the preparations, they investigate the quality of software
developed by HQ. In the experience of company HQ, the software they produce usually has a
defect density of about 0:75 per function point, but they have never investigated this systematically.
Independently from each other, all project managers mention roughly this number, without being
able to give hard evidence for it.

WorldCorp wants to test the null hypothesis that the defect density of software produced by HQ
is 0:75 and draws a random sample of 15 software systems developed by HQ. The sample shows
an average defect density 0:84 with a sample variance of 0:18. So X15 D 0:84 and S15 D 0:18. What
is the p-value of this observation, given H0 W 	X D 0:75?

If we assume random sampling, then assuming the null hypothesis, the means of large samples
drawn from this population are approximately normally distributed around 0:84. We have a small
sample, and so we assume that defect density is normally distributed over the population of
software developed by HQ. Under this assumption, it is meaningful to compute the t -statistic of
the sample under H0:

T14 D X15 � 0:75

S15=
p

15
D 1:94:

Because WorldCorp has no clue about the true average effect density, we must assume that it can
be higher or lower than 0:75, and so we will compute a two-tailed p-value. The two-tailed p-value
of the sample is 0:07. This is a rare observation, but according to statistical custom it is not rare
enough to reject H0. WorldCorp respects statistical custom and so does not use this result to reject
HQ’s claim that defect density is 0:75.

� However, suppose that the sampling frame consisted of a list of 100 software systems. Now we
must apply the correction for small populations. The correction factor is 0.93. This raises the t -
statistic to 2.09 and reduces the probability of observing a sample mean this far from 0.75 to 0.06.
Very respectful of statistical custom, WorldCorp does not regard this as rare enough to reject H0.

� Suppose now that we know from earlier empirical research across many companies that defect
densities cannot be lower than 0:75 per function point. So the true average defect density of
software produced by HQ must be 0:75 or higher. So we do a right-tailed t -test. Now the p-value,
rounded to two decimal points, is 0:04. According to statistical custom, this observation is rare
enough for WorldCorp to be considered evidence against H0.
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HQ now has something to explain. Why is the p-value so low? First, is H0 false? But then why
did all project managers give approximately the same defect density? Did they conspire? Without
evidence of a conspiracy, this is hard to accept.

Second, is H0 true and did we observe a rare event? Possibly. A sample of 15 is small and can
show large random fluctuations. And measuring defect density is not very reliable. Where did the
data come from? If we had enough time and money, we might repeat the research with a freshly
drawn random sample to see if this leads again to a low p-value.

But there is also a third option. Did we make a mistake, and should we put aside the result as
an outlier? Is the sample really random? Perhaps there was a systematic bias for more complex
and error-prone programs? Again, was there a mistake in measurement? And how is defect density
distributed? Can we assume that it is close enough to normally distributed so that we can use the
t -test? A minute’s thought makes clear that in the population of all programs, defect density is not
symmetrically distributed around its mean. Perhaps it is so skewed that using the t -distribution is
not justified.

The Significance-Testing Inference Rule

The above inference strategy, based on explaining a low p-value, contrasts with the
inference rule given in most applied statistics books:

If the p-value of a test, given H0, is low, then reject H0.

I call this the significance-testing inference rule. It is combined with the
injunction to set the significance level in advance, for example, at 5 %, and to keep
it fixed.

However, as eloquently argued by Abelson [1], a low p-value should be the
start of a discussion and not the end of it. Fisher himself late in his career made
clear that a low p-value should be combined with other knowledge in order to
draw conclusions about our null hypothesis [18]. Cox [15] and Birnbaum [8] too
emphasized the importance of weighing in prior knowledge following a statistical
test of a scientific hypothesis. The significance-testing inference rule should not be
applied mechanically.

A possible source of misunderstanding is that the significance-testing inference
rule resembles Popper’s rule of falsification: If p ! q and if we observe :q, then
we must conclude that :p. But there is no valid rule of probabilistic falsification. If
H0 implies that some events are rare, then observing such an event does not falsify
H0 [16]. All events are possible, but some events are less probable than others. As
an aside, I should remark that Popper [44] did not intend his rule of falsification to
be applied mechanically either.

Another source of misunderstanding is the term “statistical significance,” which
is by many authors abbreviated to “significance.” A statistically significant result
can be substantially insignificant, because it can be the result of sampling error
and the random correlational noise by which we are surrounded [37]. This critique
on the term “statistical significance” is almost as old as the practice of the Fisher
significance testing. The first reference I have been able to trace is from 1931 [50],
and it has been repeated over and over again [7, 11, 35, 37, 39, 46].
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Yet another misunderstanding is the 5 % rule. Why is a p-value of 0.04
statistically significant and a value of 0.07 not statistically significant? Whether
or not a rare event is important depends on our prior knowledge. In the words of
Fisher [19, p. 45],

: : : no scientific worker has a fixed level of significance at which from year to year, and in
all circumstances, he rejects hypotheses; he rather gives his mind to each particular case in
the light of his evidence and his ideas.

Hacking [26] gives a carefully argued introduction in these issues, and Gigeren-
zer gives a historical account [22, 24].

13.3.2 Neyman–Pearson Hypothesis Testing

In response to Fisher’s significance tests, Neyman and Pearson developed a way
to choose between two or more hypotheses [36]. The goal is not to find out which
hypothesis is true or is best supported by the evidence and our current knowledge,
but to choose a hypothesis that optimizes our error rates when we repeatedly take
random samples from the same distribution.

Error Rates

In the simplest decision problem, you have two specific hypotheses:

H0 W 	X D 	0

H1 W 	X D 	1

We must fix a criterion c that distinguishes these two hypothesis according to the
decision rule:

If X � c, then select H0; otherwise, select H1.

See Fig. 13.7, which shows the normal approximations of the distribution of
sample means if H0 is true and if H1 is true. The figure shows a right-tailed test of
H0 versus a left-tailed test of H1. The set of values right of c is called the rejection
region of H0, and the complement is called the acceptance region. (For continuous
variables, P.Xn D c/ D 0 and P.Xn � c/ D P.Xn < c/. So it does not matter if
we test for < c or � c.)

We do not know whether H0 or H1 is true, and so we have two error rates:

• If H0 is true, rejecting it because Xn > c is called a type I error. The type I
error rate ˛ is defined as ˛ D PH0.Xn > c/. This corresponds to the significance
level of significance testing.

• If H1 is true, rejecting it because Xn � c is called a type II error. The type II
error rate ˇ is defined as ˇ D PH1.Xn � c/.
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μ 
0

c
α

Power
1-β

β 

μ 1

If H : Type II error with probability β If H :Type I error with probability α 1 0

Fig. 13.7 The distributions of sample means if H0 W 	 D 	0 is true and if H1 W 	 D 	1 is true. If
the sample mean x < c, then H0 is chosen; otherwise, H1 is chosen. If H1 is true, the error rate ˛ is
the probability of incorrectly rejecting H0. If H1 is true, the error rate ˇ is the probability of incorrectly
rejecting H1

One error rate can be reduced by increasing the other one. Both error rates can be
reduced at the same time by increasing the sample size, because this reduces the
variance 
2=n of the distributions in Fig. 13.7. Both error rates will also be smaller
if 
 is smaller or if the difference d D 	1 � 	0 is larger.

You can avoid making a type I error by always selecting H0, but then ˇ D 1: If
you always choose H0, you are sure to make the right choice on the occasions when
H0 is true, and you are sure to make the wrong choice when H1 is true. Conversely,
if you always choose H1, then ˇ D 0 but ˛ D 1. You could call these extreme
decision criteria the criteria of blind belief: no empirical data can influence your
decision.

If you let empirical data influence your decision, then you will make errors
occasionally, and you have to decide which error levels are acceptable for this
decision problem. By convention, H0 is the hypothesis that you want to make the
least errors about. This is called the null hypothesis of the decision. H1 is called
the alternative hypothesis. Deciding which hypothesis is the null and which is the
alternative is a risk assessment that precedes the design of the test.

Following this convention, the power of the test is 1 � ˇ D PH1.Xn > c/. If H1

is true, this is the probability that we accept H1. Informally, 1 � ˇ is the power of
the test to discern, in the situations where H1 is true, that it is true:

� Suppose a company produces printer cartridges with a mean life 	 of 2,000 p., with a standard
deviation of 300 p. in a normal distribution. The product development department has produced a
new cartridge that they claim to have a mean life of 2,200 p. This claim is tested on a sample of
ten cartridges, with ˛ D 0:05, where

H0 W 	 D 2;000 versus H1 W 	 D 2;200:

What is the decision criterion, and what is the power of this test?
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We assume that the distribution of the life of new cartridges has the same variance as the
population of old cartridges and that the distribution is normal too. The decision criterion can then
be found by assuming that H0 is true:

c D 	0 C t9;0:05


p
n

D 2000 C 1:83
300p

10
D 2173:89:

If we now assume that H1 is true, we can compute the error rate ˇ by transforming this to a t value,
given H1, with 9 degrees of freedom:

T9 D c � 	1


=
p

n
D 2173:6 � 2200

300=
p

10
D �0:28:

The corresponding left-tailed error probability, given H1, is ˇ D P.t � T9jH1/ D 0:39, so the power
of the test is 1 � ˇ D 0:61. In the long run, with this kind of test, in 61 % of the times that H1 is true
when the test is done, the test will lead to a correct decision that H1 is true.

By doubling the sample size, the test becomes more accurate. The number of degrees of
freedom becomes 19, and

c D 	0 C t19;0:05


p
n

D 2000 C 1:73
300p

20
D 2115:98

which is closer to 	0:

T19 D c � 	1


=
p

n
D 2116:0 � 2200

300=
p

20
D �1:25:

P.t � T19jH1/ D 0:11, so the power increases to 0.89, which means that in the long run, when H1

is true, the test will show this in 89 % of the times.

A more complex kind of decision problem is the test of a composite hypothesis
	 > 	0 or 	 < 	0. Consider the one-sided test:

H0 W 	 D 	0 versus H1 W 	 > 	0.

Now there are infinitely many values of 	 that satisfy H1. Figure 13.8 shows
three possible distributions of the sample mean corresponding to three population
means greater than c. The criterion c separates the values of Xn considered to be
statistically the same as 	0 from those considered to be statistically greater than
	0. This means that the power of the test is not a probability, but a function,

μ 0
c

H1H0

μ 1 μ 1 μ 1

Fig. 13.8 Choosing between a specific hypotheses H0 W 	 D 	0 and a composite hypothesis H1 W 	 >

	0. Three possible values of 	1 are shown, with the distributions of their sample means. Distribution
means further to the right can be distinguished from 	0 with greater power
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parameterized by 	, that assigns the probability P	.Xn 2 R/ that a sample mean
will be in the rejection region. We do not pursue this further here. Wasserman [51,
p. 151] gives mathematical details and an example. Cohen [13, p. 95] gives an
algorithm to construct an approximation to the power function by simulation.

Inductive Behavior Versus Inductive Inference

Neyman [42] called the above decision procedure inductive behavior. You are
repeatedly sampling from the same distribution, and your goal is to optimize error
rates in your decisions, regardless of whether or not you believe that the chosen
hypothesis is true every time. You know that you will make the wrong decision
occasionally, and you have chosen the error rates in such a way that you manage
your risks rationally. It is important that you do not change these rates along the
way. The error rates are error frequencies in the long run, and to realize these rates
in the long run, you should not change the decision criterion in the short run.

This model of decision-making is applicable to signal recognition, quality
control, acceptance testing, and other situations where you can repeatedly sample
from the same distribution. What is tested in these situations is not a hypothesis but
a sample. Does the sample of measurements come from friendly airplane or from an
enemy airplane? Is the batch of products above or below a quality norm?

Fisher [18] argued acrimoniously that this model of decision-making does not
apply to scientific inference. In scientific research, we often do only one test and
combine the results with our other knowledge to draw a conclusion about the null
hypothesis. Fisher called this inductive inference.

Other authors too have pointed out that statistical testing of a scientific hypoth-
esis can be followed by a revision of our knowledge in the light of the test
results [8, 9, 49]. This revision may even include a revision of our conceptual
framework, including a redefinition of the chance model of random variables and
a reformulation of some of our causal and architectural knowledge. If that happens,
we are far removed from the repeated sampling from the same distribution, with
fixed error rates and decision criterion, envisioned by Neyman.

The contrast and conflict between the Fisher and Neyman–Pearson theories of
statistical testing have been explained with great clarity by Halpin and Stam [28]
and by Lenhard [36]. Tukey [49] emphasizes the important difference between
acceptance of a conclusion based on evidence, which is what Fisher was after, and
deciding to act on the provisional acceptance of a hypothesis, which is what Neyman
was after.

Our conclusion is that the Neyman–Pearson hypothesis testing is useful in
situations where we repeatedly draw samples from the same distribution, where
each time we have to decide mechanically among hypotheses according to a fixed
criterion. Scientific hypothesis testing is not such a situation.
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13.3.3 Null Hypothesis Significance Testing

In the social sciences, Fisher significance testing came to be merged with Neyman–
Pearson hypothesis testing in a procedure called null hypothesis significance
testing (NHST). Gigerenzer et al. [23–25] give an account of how this happened.
Halpin and Stam [28] give a compatible but less polemic account.

NHST combines elements of three strategies: Fisher significance testing,
Neyman–Pearson hypothesis testing, and statistical difference-making. To
understand statistical difference-making, I give a preview of statistical difference-
making experiments, treated more elaborately in Chap. 20.

Statistical Difference-Making Experiments

The goal of a statistical difference-making experiment is to provide evidence that
treatments A and B have a different effect, on the average, on some measured
variable X :

� For example, the goal may be to test which of two effort estimation techniques A and B provides,
on the average, more accurate estimations. One way to test this is to select a random sample of
program designs, randomly allocate technique A or technique B to each sample element, apply
the techniques, and compare the average accuracy of the results once the software has actually
been implemented.

The role of statistical inference in this argument is that it must be shown that two
sample means are so different, statistically, that it is likely that the populations from
which they were selected have different means. In other words, it must be shown
that statistically, it is plausible that the mean of the population treated by A differs
from the mean of the population treated by B . Let us call this difference between
population means ı.

Once it is established with sufficient plausibility that ı is different from 0, the
next part of the argument is a causal inference. In causal inference, we try to show
that the only possible cause of the difference ı is the difference in treatments A

and B . This is part of abductive inference, discussed in the next chapter. From a
statistical point of view, causality plays no role, and we are trying to infer something
about an unobserved population difference from an observed sample difference.

Before we discuss NHST, one terminological point is in order. The difference
ı is usually called the effect size of treatment A with respect to treatment B . This
already assumes that we know that the difference between A and B will have an
effect. Until we know this, it is misleading to use this term. Recall the critique of
the terminology of independent and dependent variables when we were discussing
research design in Chap. 11 (p. 127).
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The NHST Procedure

The NHST procedure tests the null hypothesis of no difference

H0 W ı D 0

against an alternative that there is a difference. In the simplest case, the alternative
is a specific hypothesis

H1 W ı D e

for some constant e different from 0. We can then proceed as in Neyman–Pearson
decision-making and choose a criterion to distinguish 0 from e with the desired error
rates ˛ and ˇ. However, we do not talk about accepting H0 (as is done in Neyman–
Pearson decision-making) but about not rejecting H0 (as in Fisher significance
testing).

Often, we cannot predict a specific effect size, and so we cannot formulate a
specific alternative hypothesis. We may then specify a directional hypothesis such as

H1 W 	A > 	B

or a bidirectional alternative, such as

H1 W 	A 6D 	B .

Depending on the alternative hypothesis, we then proceed with a one-tailed or
two-tailed significance test in the Fisher style. We compute the p-value of the
observed sample difference d under the null hypothesis that ı D 0, using a one-
tailed test if H1 is directional and a two-tailed test if H1 is bidirectional. If the
p-value is below 5 %, we regard H0 as rejected at the 5 % significance level and
accept H1. Some authors do not report the p-value but only report whether or not a
null hypothesis is rejected at the 5 % level or even at the 1 % level if p < 0:01.

The NHST procedure has received a lot of criticism, sometimes hilarious,
sometimes desperate, but always devastating [11,12,22,25,31,35,39]. Here I discuss
three of the many criticisms.

The Null Hypothesis of No Difference Is Always False

It would be a miracle if two sample means were the same. Even if A and B have the
same effect on the population, the means of different samples are probably different,
because of sampling fluctuation and ambient correlational noise [37, 40].

If A and B are different treatments, they are sure to have a different effect. There
is bound to be some small difference between the mean of the population treated by
A and the population treated by B . And if sample sizes are large enough, we are sure
to statistically discern any effect size, no matter how tiny it is, because the sampling
variance 
2=n will be very small. So what we test in NHST is not if two sample
means are different—we already know that they are different—but if our samples
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are big enough to see the difference. This may be statistically highly significant (a
very small p-value) but substantially unimportant:

� Bakan [2] partitioned a database of 60, 000 subjects into groups according to arbitrary attributes,
such as living east of the Mississippi or west of the Mississippi, in Maine versus in the rest of
the country, etc. For each of these pairs of samples, he tested arbitrary variables. For each of
these variables, the means in the two samples were different with a statistical significance better
than 5 %. None of these statistically significant differences had any substantial meaning. They are
ambient correlational noise between two variables.

� Meehl [38] identifies a casual influence of the religion of the father on a child’s ability to name colors
that runs through social class, personality trait of father, economic success of father, education
level of children in a family, sex differences in color naming, feminine occupations of father, child’s
general intelligence and father’s occupation, general intelligence, and color naming competence.
All of these influences are weak, but each of them is known to exist.

� The connectedness of the real world is not restricted to the social world. Robins and Wasser-
man [45, p. 318] report that epidemiologists learn early in their career that in studies with large
sample sizes, “one typically observes highly significant statistical associations between variables
which are firmly believed, on biological grounds, not to be causally associated.”

These examples relate to the point made earlier that a statistical inference rule must
never be applied mechanically but must be combined with other knowledge to draw
defensible conclusions.

There Are Many Alternatives to a Null Hypothesis

There are infinitely many specific alternative hypotheses that can be compared
with the null hypothesis of no difference. Statistical rejection of the null does not
imply truth of any particular one of these alternatives. In the Neyman–Pearson-
inspired version of NHST, the hypothesis is selected that best explains the observed
difference as compared to the other specified hypotheses. In the Fisher-inspired
version, whatever the alternative is, it is selected when the observed difference is
improbable given H0. Either way, the conclusion from rejecting the null hypothesis
would be different for every different alternative hypothesis. What conclusion is best
supported depends on all the other things that we know or believe, and it does not
follow mechanically that the best-supported conclusion is the alternative hypothesis
that we were testing.

Rejecting a Null Is Not Rejecting a Scientific Hypothesis

Earlier, we saw that Fisher significance testing should not be confused with Popper’s
rule of falsification, because there is no rule of probabilistic falsification. Here, we
see a second difference with Popper’s rule of falsification: What we test is the null
hypothesis of no difference, rather than a substantial research hypothesis postulating
a difference. We are testing something that does not follow from a scientific theory
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and that we know is false. Popper wants to test scientific theories, but NHST is never
a test of a scientific theory.

13.3.4 Conclusions About Hypothesis Testing

Summing up our discussion of statistical hypothesis testing, I conclude that Fisher
significance testing can be useful if used properly, combined with prior knowledge,
but is sterile when used mechanically.

Neyman–Pearson testing is useful in practical decision-making situations where
we can and must make decisions mechanically when sampling repeatedly from the
same distribution, such as in signal recognition or quality control. Long-term error
probabilities matter here. But scientific inference is not such a situation.

NHST is a procedure in which we test a hypothesis of which we know that it is
false and that does not follow from any scientific insight. When the null is rejected,
this does not imply anything about the alternative hypothesis. Despite its widespread
use, this is not a useful procedure.4

Some methodologists argue for Bayesian hypothesis testing, in which prob-
abilities are seen as measures of strength of evidence, as measures of strength
of belief, or as measures of your willingness to gamble [26, 27]. This makes
sense as an alternative for significance tests, which somehow try to quantify the
strength of evidence but, as a frequentist approach, cannot quantify the strength of a
statistical hypothesis. For large samples, Bayesian and frequentist inference agree,
but Bayesian methods do not give long-run performance guarantees [51, pp. 176
ff]. They must also make additional assumptions that are not required in frequentist
inference, such as assumptions about a prior belief distribution or about the size
of a quasi-sample that does not exist but must be assumed to characterize prior
knowledge [54]. We will not pursue Bayesian inference techniques here.5 Instead of
trying to quantify strength of belief with numbers and then choosing the belief with
the highest number, in this book we try to justify beliefs with arguments and then
proceed to tentatively adopt the belief with the best arguments.

13.4 Estimating Confidence Intervals

We now turn to the other kind of statistical inference, using sample data to
estimate a property of a statistical model of the distribution from which the sample
was selected. Some of the pitfalls of hypothesis testing, such as confusion with
Popperian falsification of a research hypothesis, disappear, because no hypotheses
are tested. Others, such as the danger of mechanical application of a decision rule
when this is not appropriate, are still present and must be avoided by intelligent
application of confidence interval estimation.
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13.4.1 Confidence Intervals

The reasoning for confidence interval estimation is straightforward. We know
that

ZXn
D Xn � 	


=
p

n

approaches a standard normal distribution when n ! 1. Therefore,

P.�z0:025 � ZXn
� z0:025/ � 0:95;

where the approximation is bad for small n and gets better for larger n. Expanding
ZXn

and rearranging, this implies

P.Xn � z0:025


p
n

� 	 � Xn C z0:025


p
n

/ � 0:95:

In this approximation, 	 and 
 are unknown distribution parameters, and Xn is a
known sample statistic. The interval

.Xn � z0:025


p
n

; Xn C z0:025


p
n

/

is called a 95 % confidence interval for the population mean. A confidence
interval quantifies the random fluctuation of the sample mean around the population
mean. It is customary to write it as an open interval, with round brackets, because
the probability that an open interval contains 	 is the same as the probability that a
closed interval contains 	.

We would like to get rid of 
 , which is usually unknown, and estimate it with Sn.
We can do this if the sample size is larger than 100 or if X is normally distributed
and the sample size is smaller than 100. Switching to the t-distribution with n � 1

degrees of freedom, a 95 % confidence interval for the population mean estimated
with a t-distribution is

.Xn � tn�1;0:025

Snp
n

; Xn C tn�1;0:025

Snp
n

/:

This interval is larger, so less accurate, than a 95 % confidence interval estimated
with the standard normal distribution and 
 . However, for large samples, the t and
z distributions are almost the same.



www.manaraa.com

168 13 Statistical Inference Design

13.4.2 The Meaning of Confidence Intervals

What does a confidence interval estimation mean? The accepted interpretation is
this [4, 26, 51]:

In all of the 95 % confidence interval estimates that are done in the world, in the long run
the real distribution mean will be in this interval in approximately 95 % of the estimates.

The reason is that an infinitely long sequence of decisions to accept or reject
hypotheses about parameters 	 and 
 with a risk of 5 % of being wrong each time
has in any finite prefix an error ratio that in the long run converges in probability on
0.05 [3, p. 23]. This follows from the weak LLN.

Of course, no one knows which 5 % of the confidence interval estimations will
be out of range. You may have bad luck and score out of range for a while. And if
the sequence of confidence interval estimations gets very long, a small percentage
out-of-range estimations is a very large absolute number. And how long must we
wait until the percentage of out-of-range estimations will get close to 5 %? As
Keynes famously said, in the long run, we are all dead. Confidence intervals give us
confidence, not certainty.

Acknowledging the fallibility of statistical inference, confidence intervals can
give us useful information about population distributions:

� We return to the example of WorldCorp who wants to know what the quality of the software
developed by takeover candidate HQ is. The project managers of HQ all say that it about 0:75

per function point.
WorldCorp randomly selects a sample of 15 software systems developed by HQ. The sample

shows an average defect density 0:84 with a sample variance of 0:18, so X15 D 0:84 and S15 D 0:18.
What is the estimated 95 % confidence interval for the mean defect density in the population?

Assuming random sampling and assuming that defect density is normally distributed over the
population of software developed by HQ, the TX15

statistic has a t14 distribution, and we can
estimate the 95 % confidence interval for the mean defect density as

.X15 � t14;0:025

S15p
15

; X15 � t14;0:025

S15p
15

/ D .0:74; 0:94/:

This just includes the 0:75 given by the project managers, but the confidence interval suggests that
the mean may be a bit larger.

If the sampling frame had 100 elements, the correction factor for sampling without replacement

would be about
q

100�15
100�1

D 0:93, which makes a negligible difference in the estimation.

� Suppose the sample would have consisted of 30 software systems rather than 15 and that X30 D
0:84 and S30 D 0:18. Still assuming random sampling and normal distribution of defect density, the
95 % confidence interval for the mean defect density now is

.X30 � t29;0:025

S30p
30

; X30 � t29;0:025

S30p
30

/ D .0:78; 0:91/:

The sample contains more information because it has 29 degrees of freedom, and the estimation
interval is therefore narrower than the one constructed from X15. Larger samples give more
accurate estimations.

The new confidence interval does not contain 0:75, suggesting that the project managers are
too optimistic, but not by much.
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If we assume a sampling frame of 100 software systems, then this sample needs a correction

factor of
q

100�30
100�1

D 0:84, which gives a slightly smaller confidence interval.

13.4.3 Fisher Significance Tests and Confidence Intervals

There is a systematic relation between confidence interval estimation and statistical
significance testing: The 95 % confidence interval around a particular observed
sample mean xn is the set of null hypotheses that would not be rejected by xn

according to the significance-testing inference rule at the 5 % level. To illustrate
this graphically, panel (a) of Fig. 13.9 shows a 95 % confidence around xn. Panel
(b) shows a distribution mean on the same number line and the acceptance region
that cuts off 95 % of the standard normal curve centered on 	0. The sample mean
xn is outside this region and so would be rejected according to the significance-
testing inference rule at the 5 % significance level, using H0 W 	X D 	0 as null
hypothesis. The same decision would be made for any distribution mean outside the
95 % confidence interval around xn.

In panel (c), the distribution mean 	0
0 is inside the confidence interval, and

it would not be rejected by the significance-testing inference rule at the 5 %
significance level. The same decision would be made about any distribution mean
inside the 95 % confidence interval around xn.

We can strengthen the analogy between statistical significance tests and con-
fidence intervals by introducing one-sided confidence intervals to correspond to
one-sided statistical significance tests, but we will not pursue this further. See, for
example, Wonnacott and Wonnacott [54, p. 317].

13.4.4 Methodological Comparison with Hypothesis Testing

Confidence interval estimation gives us a plausible range around xn for the
distribution mean. For any distribution mean 	0 in this range, the probability to

x
_

n

μ’ 

μ 

a

c

b

0

0

Fig. 13.9 (a) A 95 % confidence interval around the sample mean xn. (b) xn is in the 95 % region of
	0. According to the significance-testing inference rule, xn would not reject H0 W 	 D 	0. (c) xn is in the
5 % region of 	0

0. According to the significance-testing inference rule, xn would reject H0 W 	 D 	0

0
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observe a sample mean as far away from 	0 as xn is more than 5 %, and so according
to the significance-testing inference rule, H0 W 	X D 	0 would not be rejected.
The sample mean xn rejects H0 exactly if 	0 is outside the confidence interval
around xn.

Confidence interval estimation gives us more information than significance
testing, because it gives us a range of estimations, where the size of the range
depends on the sample variance and the desired level of confidence. If the sample
size is larger, the estimate is more accurate (the interval is smaller). If the
desired confidence is larger, the estimate will be less accurate (the interval will be
larger).

Just as there is no other reason than custom to choose 5 % significance in
significance testing, there is no reason other than custom to choose 95 % in
confidence interval estimation. We may require higher or lower levels of confidence,
as the research context requires.

Confidence interval estimation is simple mathematics, but drawing conclu-
sions from it is not mechanical. As we have seen in the example, the posi-
tion of a hypothetical mean just inside or just outside a confidence interval
gives useful information that must be combined with other knowledge to draw
conclusions.

13.5 Statistical Conclusion Validity

Statistical conclusion validity is the validity of the statistical inference from sample
data to a statistical model [47, p. 512]. Assuming that no mistakes have been
made in computations, the validity of this inference depends on the validity of
the assumptions made by them. The assumptions of confidence interval estimation
are listed in Table 13.5. Note that these assumptions are empirical. A particular
population, sample, or variable may violate them [5,6,20]. Other statistical inference
techniques make other assumptions that we do not list here. Textbooks on statistical
inference always discuss the assumptions made by the different statistical inference
techniques.

For statistical difference-making experiments, there are additional important
requirements for statistical conclusion validity: The allocation of treatments to
sample elements must be random (Table 13.5). Only if allocation is random can we
treat the sample treated with A and the sample treated with B as random samples of
the population treated with A and the population treated with B , respectively.

There are yet other threats to conclusion validity, which are not really empirical
assumptions about the sample of the population or X , but requirements for reporting
about research. These are customarily regarded as threats to conclusion validity, and
so we list them here (Table 13.5).6
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Table 13.1 Assumptions of confidence interval estimation

• Stable distribution. Does X have a stable distribution, with fixed parameters?
• Scale. Does X have an interval or ratio scale?
• Sampling. Is sample selection random or does it contain a known or unknown systematic

selection mechanism?
• Sample size. If the z distribution is used, is the sample sufficiently large for the normal

approximation to be used?
• Normality. If the t -distribution is used, is the distribution of X normal, or is the sample size

larger than 100?

Table 13.2 Assumption of statistical difference-making experiments

• Treatment allocation. Are the treatments allocated randomly to sample elements?

Table 13.3 Things to avoid when reporting about statistical difference-making experiments

• Effect size. Seeing a very small difference, but not telling that it is small
• Fishing. Seeing no difference most of the time, but not telling this
• Very high power. Not telling about a reason why you can see a difference (very large

sample size makes very small differences visible)
• Sample homogeneity. Not telling about another reason why you can see a difference

(groups are selected to be homogeneous, so that any intergroup difference stands out)

If effect size is small, this is important information for the reader, and it should be
reported. With a large sample, even a small effect size can be statistically significant.
But substantial significance depends on the size of the effect.

Another requirement for reporting is that all results are reported. If we fish for
differences, we will always catch one. Just repeat the experiment until you finally
hit a confidence interval that does not contain 0. Or ask your students to do as many
experiments as possible and report the ones where the confidence interval for the
population difference does not contain 0.

Another way to catch a difference is to increase the sample size. The power to
discern a difference statistically can be made as high as you wish this way. So if
you expect the difference to be small, select a sample so large that the confidence
interval around the sample difference still excludes 0.

Another way to find a difference is to make a sample homogeneous. If there
is little variation within samples, any difference between samples will stand out.
This does not imply that there is anything wrong about the statistical inference
used. Maybe the population is extremely homogeneous, as it is in some engineering
applications. If the population is not homogeneous, random sampling delivers a
homogeneous sample only by extreme coincidence, and this should be reported.
In the long run, random sampling will not give us homogeneous samples from a
heterogeneous population.
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13.6 Summary

• Statistical inference is the inference of properties of a statistical model from
sample observations.

• Statistical inference is based on the CLT, which says that the means of sam-
ples selected randomly from a distribution with mean 	 and variance 
2 are
distributed normally around 	 with variance 
2=n.

• In statistical hypothesis testing, we assume one or more hypotheses about a
statistical model and then compute the conditional probability of the sample data
given these hypotheses:

– Fisher significance testing tests one hypothesis. This can be useful when the
results are combined with prior knowledge.

– Neyman–Pearson testing tests two or more hypotheses and can be useful in
situations of repeated sampling where error rates must be controlled.

– NHST tests a null hypothesis of no difference against an alternative. This is
not useful.

• A 95 % confidence interval for the population mean is an interval that is claimed
to enclose the population mean. In the long run, this claim is true in 95 % of the
95 % confidence interval estimations.

• Conclusion validity:

– Confidence interval estimation makes a number of assumptions about the
sample, how it was selected from the population, and about the variable.

– Estimation of the difference in population means makes the same assump-
tions. It additionally assumes random allocation.

– Conclusion validity includes assumptions about proper reporting about statis-
tical inference.

Notes

1Page 143, statistics textbooks A classic reference on statistical experiments in software engi-
neering is the book by Juristo and Moreno [34], giving all required details about statistical research
design and statistical inference. More compact is the book by Wohlin et al. [53]. Cohen [13] gives
a comprehensive introduction to statistical inference, including computer-intensive nonparametric
methods such as bootstrap methods and randomization tests. It gives examples from artificial
intelligence, but all of the techniques are applicable in software engineering and information
systems too.

An extremely readable introduction to the statistics of business research is given by Won-
naccott and Wonnaccott [54]. They have a clear explanation of the relation between estimating
confidence intervals and testing hypotheses. They also have chapters on Bayesian inference and
nonparametric inference, but not on computer-intensive methods. Cooper and Schindler [14] give a
textbook introduction to business research methods, giving the full picture of the empirical research
cycle, including chapters on hypothesis testing and analysis of variance.
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Field [17] is a well-written but very verbose introduction to statistics for psychologists, with
many humorous examples. It discusses all of the statistical software package SPSS. There is now
also a version of his book using R. The R language and programming environment for statistical
computing and graphics are freely available from http://www.r-project.org/.

Freedman [20] is a careful introduction to descriptive statistics, hypothesis testing, and
confidence interval estimation for sociologists that is also very verbose but nevertheless never gets
boring. His endnotes give a lot of additional useful information for teachers. This is recommended
reading, even for the mathematically inclined, because it gives sharp intuitions about what you can
do with statistical inference and under which assumptions.

Along the same lines but more wide-ranging and less verbose is the online text published and
maintained by Philip Stark, SticiGui (http://www.stat.berkeley.edu/~stark/SticiGui/index.htm). It
gives an introduction to probability, hypothesis testing, and confidence interval estimation and
adds a lot of practical examples of informal but structured argumentation. It is a joy to read.

If you want to understand the mathematics of statistical inference, Wasserman [51] provides
a comprehensive introduction in classical parametric statistics as well as more modern methods
such as bootstrapping and causal modeling. My exposition follows Freedman for the intuitions and
Wasserman [51] for the mathematics.

2Page 149, simulations of the CLT. Philip Stark provides many useful simulations in his online
statistics textbook at http://www.stat.berkeley.edu/~stark/SticiGui/index.htm.

3Page 151, web applications for t -distributions. Two useful sites are http://stattrek.com/
online-calculator/t-distribution.aspx and http://www.danielsoper.com/statcalc3/default.aspx. You
could also use the R environment, mentioned in note 1 above, to compute p-values.

4Page 166, critique of NHST. The debate about NHST has been raging for a long time in
psychology. Some authors have become desperate about the continued use of NHST in some
disciplines. Already in 1967, the renowned psychologist Paul Meehl [38, p. 114] called a researcher
who produces a string of statistically significant results, very unkindly:

an eager-beaver researcher, undismayed by logic-of-science considerations and relying
blissfully on the ‘exactitude’ of modern statistical hypothesis-testing .... In terms of his
contribution to the enduring body of psychological knowledge, he has done hardly anything.
His true position is that of a potent-but-sterile intellectual rake, who leaves in his merry path
a long train of ravished maidens but no viable scientific offspring.

This was in 1966. Eleven years later, he was less rude but not less clear [39, p. 817]:

I suggest to you that Sir Ronald [Fisher] has befuddled us, mesmerized us, and led us down
the primrose path. I believe that the almost universal reliance on merely refuting the null
hypothesis as the standard method for corroborating substantive theories in the soft areas
is a mistake, is basically unsound, poor scientific strategy, and one of the worst things that
ever happened in the history of psychology.

In 1982, the outgoing editor of the Journal of Applied Psychology [10] tried it with humor:

Perhaps p-values are like mosquitos. They have an evolutionary niche somewhere and
no amount of scratching, swatting, or spraying will dislodge them. Whereas it may be
necessary to discount a sampling error explanation for results of a study, investigators must
learn to argue for the significance of their results without reference to inferential statistics.

In 1994, the top-ranking applied statistician Cohen [12], of statistical power and Cohen’s
� fame, stated that NHST has seriously impeded the advance of psychology as a science and
confessed to the temptation to relabel it into statistical hypothesis inference testing, which has an
easy to remember acronym.

5Page 166, Bayesian statistical hypothesis testing. Nola and Sankey [43] give a two-chapter
introduction, a Bayesian reconstruction of scientific inference. Wonnacott and Wonnacott [54]
show how to do Bayesian hypothesis testing and confidence interval estimation. Wasserman [51]
explains the difference mathematically and discusses the problem of priors.

http://www.r-project.org/
http://www.stat.berkeley.edu/~stark/SticiGui/index.htm
http://www.stat.berkeley.edu/~stark/SticiGui/index.htm
http://stattrek.com/online-calculator/t-distribution.aspx
http://stattrek.com/online-calculator/t-distribution.aspx
http://www.danielsoper.com/statcalc3/default.aspx
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Bayesian and frequentist methods answer different questions [51, p. 189]. Bayesian methods
can be used to answer the question how to combine numerical quantifications of prior belief, prior
strength of evidence, or prior willingness to gamble, with newly obtained data. The real problem
here is how to get these quantifications in the first place. Frequentist methods can be used to answer
the question how to infer a statistical model of one or more variables that has guaranteed long-run
performance. The real problem here is that we do not know how long the run must be before it is
stable. We may not live long enough to see this, and the world on which the estimations are based
may have changed before it has run long enough for our estimates to be stable.

6Page 170, threats to conclusion validity. Shadish et al. [47, p. 45] mention three additional
threats not listed here. Unreliability of measures and restriction of range are in this book discussed
as part of threats to analogic inference, in particular threats that are posed by measurement design.
Unreliable treatment implementation is a threat to analogic inference too, this time a threat posed
by treatment implementation. These threats are discussed in Chap. 15 on analogic inference.
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Chapter 14
Abductive Inference Design

Abductive inference is inference to the best explanation(s). The traditional defi-
nition of abduction is that it traverses deduction in the backward direction: From
p ! q and q, we may tentatively conclude that p. We know that fire implies
smoke, we see smoke, and we conclude that there is fire. There is no deductively
certain support for this, and there may be other explanations of the occurrence of
smoke. Perhaps a Humvee is laying a smoke screen? Douven [5] gives a good
introduction into abduction as a form of reasoning, and Schurz [24] provides an
interesting overview of historical uses of abduction in science, with examples.

Abduction is used in case-based research and sample-based research to explain
case observations and statistical models, respectively. Examples are given in
Sect. 14.1. We distinguish three kinds of explanations, namely, causal explana-
tions, architectural explanations, and rational explanations, which are treated in
Sects. 14.2, 14.3, and 14.4, respectively. Some phenomena may be explainable in all
three ways. Which explanations are relevant for us depends on our research goals.

We do not consider statistical models to be abductive explanations. A statistical
model describes some property of the distribution of one or more variables over
a population but does not explain it causally, architecturally, or rationally. It does
explain sample observations statistically, but these explanations are computational.
In a very literal sense, statistical explanations of data account for the data. For
example, the variance of a distribution statistically explains, i.e., accounts for,
the variance found in a random sample from the distribution. This explanation is
numerical and does not tell us what is the cause, mechanism, or reason for the
sample variance.

Just as the other forms of inference that we discuss, abduction may deliver a false
conclusion from true premises and is therefore ampliative. We discuss guidelines
for validity of abductive inference throughout the chapter and summarize them in
Sect. 14.5.

© Springer-Verlag Berlin Heidelberg 2014
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14.1 Abduction in Case-Based and in Sample-Based
Research

Figure 14.1 shows that there are two possible starting points for abduction. In case-
based research, we try to find plausible explanations of case observations, and in
sample-based research, we try to find plausible explanations of a statistical model,
i.e., of a statistical generalization. Here are two examples:

� First, an example explanation in case-based research. Sabherwal [23] defined four kinds of coor-
dination mechanisms for global outsourced information systems development projects, namely,
coordination by standards, by plans, by formal adjustment, and by informal adjustment. This was
his theoretical framework.

In a series of case studies, he interviewed senior executives at six vendors and at four client
organizations about the evolution of these coordination mechanisms during a recent project they
were involved in. One observation extracted from these interviews is that at the start from the
project, vendors desired greater formalization of coordination mechanisms but clients preferred
things to be left flexible. This observation is the result of a descriptive inference from the interview
data.

Next, abductive inference starts. The first explanation offered by Sabherwal for this observation
is that vendors sold outsourcing arrangements as “partnerships,” causing the clients to think that
formal coordination mechanisms are unnecessary [23, p. 179]. A second explanation is that at the
start of a development project, during requirements engineering, informal relationships are more
important than formalized relationships [23, p. 182]. Sabherwal does not view this as competing
with the first explanation but as a second explanation that can be true at the same time as the first
and that should be pursued in further research.

� As an example of explanation in sample-based research, we return to the study of Hildebrand
et al. [9]. In the previous chapter, we saw that the researchers estimated a statistical model of the
relation between a change in consumer preferences and the feedback they received (p. 145). This
relation was assumed to be linear and can then be represented as a straight line through a point
cloud. The researchers estimated the coefficients of the linear equation representing this line by a
statistical inference technique, linear regression.

Next, abductive inference starts. The slope of the line was positive, meaning that consumers’
final preference is closer to the feedback that they received than their initial preference. A qualitative
explanation given by the theoretical framework of Hildebrand et al. is that people in general tend
to seek approval of others. People discount the opinion of distant others but will tend to conform to
the opinion of others who are perceived as experts and of those whom they like.

A second qualitative explanation of the slope of the line is that the subjects of the field study
self-selected into the treatment (receiving an advice from someone else) and could have been
more susceptible to the influence of others than those who did not self-select themselves into this
treatment. Hildebrand et al. think this explanation is implausible [9, p. 27].

Data Descrip�ons

Explana�ons

Generaliza�ons
Sta�s�cal
inference

Abduc�ve
inference

Descrip�ve inference Abduc�ve
inference

Analogic
inference

Fig. 14.1 Abductive inference produces explanations of descriptions or of generalizations
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Yet other explanations can be given too. Perhaps the subjects shared other characteristics that
can explain the observation, such as their age, sex, or education level. More information is needed
to assess which of these explanations is most plausible or whether several of them are equally
plausible.

In research, there is often an interplay between prediction, description, and expla-
nation. The researcher first predicts the outcome of a treatment, using a theoretical
framework. Next, the research is done, and results are described, possibly statisti-
cally. Finally, the results are explained. If the outcome happened according to the
prediction done in advance, then most likely the theory used for prediction will
now be used to give an explanation. But there might be other explanations too, and
the researcher should assess them on plausibility and include them in the research
report.

14.2 Causal Explanations

Recall from Chap. 9 (Scientific Theories) that a causal explanation of a change in a
variable Y has the following form:

Y changed because, earlier, a variable X changed in a particular way.

This is a difference-making view of causality, in which we explain a change in Y

causally by referring to an earlier event that made a difference to Y . We can illustrate
this with the two examples given above:

� In the example of Sabherwal [23] above, the two explanations are causal. The fact that coordination
at the start of an outsourcing project is informal was explained causally by the earlier event that
vendors present outsourcing as partnerships. This explanation itself was backed up by reference
to agency theory [23, p. 180]. The second explanation was that requirements engineering activities
at the start of a project caused many informal exchanges between client and provider [23, p. 182].
Both explanations point at an earlier event which made a difference to the variable level of formality
of coordination. As it happens, in both explanations, the earlier event made a difference to this
variable in the same direction.

� In the study by Hildebrand et al. [9], a change in customer preference was explained as the causal
effect of feedback received earlier. Receiving feedback made a difference to consumer preference.
We have seen that here too there may be additional causal explanations and that here too all point
in the same direction.

Causal inference is the reasoning process that produces a causal explanation
of observed phenomena. As all forms of abductive inference, it is fallible. The
examples illustrate a fundamental problem for causal inference, namely, that
difference-making explanations are counterfactual [10]. If we say that an earlier
event made a difference to a variable, we are comparing what actually happened
with what would have happened if the earlier event had not taken place. For any
individual case, this is an unverifiable statement:

� If we observe that a particular consumer changes or her preference after receiving feedback, we
cannot know what this consumer would have done if he or she had received other feedback or no
feedback at all. Perhaps the consumer would have changed his or her preference anyway.
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Under some assumptions, we can deal with this problem by comparing the behav-
ior of an object of study at different points in time, and under other assumptions, we
can deal with it by comparing the behavior of similar objects of study. Below, these
research designs are shown. First, we discuss three reasons for inferring the absence
of a causal influence between X and Y .

14.2.1 Arguments for the Absence of Causality

To check whether causality can be present, we must check at least three conditions:
covariation, temporal precedence, and spatial possibility [16]. If any of these
conditions is absent, it is safer to conclude that there is no causality.

Covariation

If differences in X make a difference to Y , then X and Y must covary. So if X and
Y do not covary, then differences in X apparently do not make a difference to Y .

� If there is no covariation between a consumer preferences and feedback received earlier, we can
assume that there is no causal relation between the two.

For causal inference, it is important to deal with four possible explanations of
covariation of X and Y :

1. Changes in X cause changes in Y .
2. Changes in Y cause changes in X .
3. A possibly unknown variable U causes changes in both X and Y .
4. Observed covariation is a coincidence.

In complex situations, the first three explanations may all be true:

� Feedback from a friend X may influence a consumer’s preference, consumer’s preferences may
influence the feedback that a friend gives, and both can be influenced by advertisements that they
both have been exposed to.

Temporal Precedence

Causation cannot work backward in time. This is an easy way to exclude causal
influences:

� Feedback on a consumer choice can influence later changes in preferences, but not earlier
changes. Of course, a consumer can form expectations about likely feedback, and these
expectations can influence the consumer’s preferences. But then all causal influences still happen
from past to future: Past events influence the consumer’s expectations, and these expectations
may influence the consumer’s later preferences.
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Spatial Possibility

There is no action at a distance. Gravity and quantum entanglement are spectacular
exceptions that confirm the rule. In the physical world, usually, cause and effect
must be physically close. In the worlds of people and software, there is a similar
principle of action by contact: People and/or software that do not have a channel of
communication cannot influence each other. If differences in X make a difference
to Y , there must be a chain of action-reaction steps that transfer the influence. If
there is no conceivable mechanism that leads from a change in X to a change in Y ,
it is hard to see how differences in X could make a difference to Y :

� Feedback received by a consumer may impact the consumer’s beliefs and expectations, which may
influence the consumer’s preferences. Even if we would not know how any of this happens, it is
conceivable that some psychological mechanism like this happens. Before doing their experiment,
Hildebrand et al. [9] used theories from social psychology to make it plausible that such a causal
effect could exist.

14.2.2 Research Designs for Causal Inference

After we established that causal influence is not impossible, we must provide
positive evidence for its existence. We can do this in two ways. In cross-sectional
studies, we take a cross section of the population to show that across cases
in otherwise similar circumstances, a change in X leads to a change in Y . In
longitudinal studies, we take a sequence of snapshots of a case for a while, to
show that in otherwise similar circumstances, changes in X are always followed by
changes in Y . Combining this with our distinction between case-based and sample-
based research, we get the classification of research designs shown in Table 14.2.2.
We look at the logic of these designs in the sections to follow.

Most of these designs are experimental, but a few are observational. In all
research designs, causal inference is done by assessing the plausibility of causal
explanations. We design the research setup in such a way that if we do observe
a change in Y , we can list all possible causal explanations of this change. In the

Table 14.1 Research designs to support causal inference. All sample-oriented designs, except the
randomized controlled trial, are quasi-experiment designs

Cross-sectional Longitudinal

Case � Comparative-cases causal experiment � Single-case causal experiment

Sample � Nonequivalent group design
� Regression discontinuity design
� Randomized controlled trial

� Interrupted time-series design
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ideal case, the change in X is the only plausible explanation of the observed change
in Y , and all other explanations are implausible. More realistically, more than one
explanation will be plausible, but we hope to be able to argue that it is plausible that
the change in X too has contributed to the observed change in Y .

Single-Case Causal Experiment

There are two ways to use a single-case experiment, one to support causal inference,
discussed here, and one to support architectural inference, discussed later in this
chapter. In a single-case causal experiment, we assume that the effect is transient
and time independent [10]. We expose a single population element to two different
values for X in sequence and measure the values of Y each time. The causal
inference is like this:

• If the effect of a difference in X is transient,
• and independent of time,
• and all other conditions are held constant,
• a difference in Y measured after X changed, must have been caused by the

difference in X .

Transience, time independence, and identity of conditions over time are strong
assumptions that must be ascertained by the researcher. And if the population
elements are all identical in their response to X—another strong assumption—then
we can generalize this conclusion to the population.

In engineering, this kind of single-case causal reasoning occurs quite often,
usually combined with architectural reasoning about the components of the object
of study, as we will see later. In the social sciences, single-case experiments cannot
support causal reasoning because the necessary assumptions are violated when
people are involved:

� We can test a device or software system by exposing it to different inputs and measuring its outputs.
If the effect of a previous input is transient and the effects of input are not influenced by time and
we keep all other inputs constant, then this gives an accurate picture of the effect of the input on
the output.

� Suppose a student maintains programs first using technique A, then using technique B , and
then again with A, and we measure maintenance effort to see if the difference in maintenance
techniques makes a difference for maintenance effort. Quite likely, after the first maintenance task
with A, the student has built up experience in maintenance, which influences the effort of later
maintenance tasks. So the effect of doing a maintenance task is not transient. And the effect of
using A to do maintenance is not transient either. The second time will be easier.

Depending on the student, the time of day may influence maintenance effort too, which violates
the time-independence assumption. And every maintenance task will be performed on a different
program, which means that the conditions of maintenance are not identical across the experiments.
All of this makes single-case causal inference unreliable if the object of study involves people.
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Comparative-Cases Causal Experiment

In a comparative-cases causal experiment, we assume that different population
elements are identical in their behavior with respect to X and Y . We expose two
different elements to two different values of X and measure the values of Y in
the two elements. Causal inference from a comparative-cases experiment has the
following form:

• If different population elements respond identically to differences in X ,
• and two population elements have been exposed to different levels of X ,
• and all other conditions are identical for the two elements,
• then a difference in Y in the two population elements must have been caused by

the difference in X .

The assumptions of identical response and identical conditions are very strong. If
they are true, they allow us to generalize from two population elements to the entire
population of identical elements. As above, this can be applied in engineering, but
it is very unreliable in social science:

� Destructive testing of hardware can be done this way. Different copies of a device are exposed to
different levels of X , keeping all other conditions identical across devices, to see at which level the
device breaks.

� Software that accumulates its earlier stimuli and responses, and therefore never returns to an
earlier state, can also be tested this way. Different copies are exposed to different values of X ,
keeping other conditions identical, to see what the effect of the difference is.

� If we include human subjects in the study, then the assumption of identical response across human
subjects is very strong. We would need additional knowledge that assures us that people do
respond the same to the stimuli applied in the experiment. It is safer to assume that different
people respond differently to the same stimuli, although the differences may be small.

Randomized Controlled Trials

If there is variation across population elements in the behavior with respect to X or
conditions are hard to keep identical, then comparison of two elements will not give
us information about the effect of a difference in X . We then need to switch our
reasoning from the case level to the sample level and assume that on the average
there is a stable response to differences in X in a sample. The price we pay for this
move to the sample level is that we establish difference making on the average. It
does not tell us for a given population element, whether X makes a difference to Y .

In a randomized controlled trial (RCT), causal reasoning is based on random
allocation. In the two-sample setup that we discuss in this book, we assume that the
treatment variable X has two values, A and B . We select a sample randomly and
randomly allocate treatments A and B to the sample elements, so that we have a
subsample exposed to A and a subsample exposed to B . The treatments are applied,
Y is measured, and we compute the statistic dAB D Y A � Y B and statistically
estimate a confidence interval for the population parameter ıAB D 	A � 	B . If
the interval contains 0, we assume that the difference between A and B had no
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effect on Y . Otherwise, the confidence interval is an estimate of the effect that
difference between A and B has on Y . This is the difference-making experiment
sketched earlier when discussing the NHST inference strategy. It is described in full
in Chap. 20 on statistical difference-making experiments.

There are different RCT designs, but the above two-sample setup suffices to
explain the logic of causal inference in RCTs. The logic of causal inference from an
RCT is this [25]:

• If the sample has been selected randomly,
• and treatments A and B have been allocated randomly,
• then a difference between 	A and 	B must have been caused by the difference

between A and B .

Random sampling and random allocation jointly ensure that we have two randomly
selected samples, from two versions of the population, namely, the population
treated by A and the population treated by B . This licenses the application
of the central-limit theorem in statistical inference from these samples to these
populations. Random allocation additionally allows us to conclude, in our causal
inference, that the difference between A and B is the only possible stable cause of a
difference between 	A and 	B . This cause is called stable because in the long run,
all other possible causes cancel out:

� A new drug is tested by comparing it with another drug (or a placebo) in double-blind randomized
controlled experiments. Doctors and patients do not know who receives which treatment, which
excludes two possible influences on the outcome. If the researcher is able to randomize all other
possible influences on the outcome, then in the long run, these other influences average out, and
a difference in average outcomes between treatment and control group that is stable in the long
run can only be attributed to the treatment.

� Double-blind testing is not possible in software engineering, because it is not possible for a software
engineer to be unaware of the technique that he or she is using [14]. Randomization is still a
powerful basis for causal inference, but the researcher must allow for some influence on the
outcome variable of the fact that subjects knew that they were using a particular technique in
an experiment.

Random treatment allocation is a very strong requirement, and in quasi-
experimental designs, allocation is not randomized. This means that in statistical
inference, the the estimation of the population difference ıAB contains a systematic
displacement (bias). To get the true value of ıAB , this displacement has to somehow
be estimated. If this is not possible, qualitative reasoning may still be possible:

� For example, if we observe a large productivity increase in the experimental group that used a new
software engineering technique in a randomized controlled trial, then we may conclude that part of
this is due to the new technique and part of it is due to the novelty of the technique, even though
we cannot quantify these different contributions.

Quasi-Experimental Designs

In quasi-experiments, assignment of a treatment to objects of study is not random.
This means that the sample itself is not selected randomly from the population,
and/or the treatments are not allocated randomly to elements of the sample.
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One kind of quasi-experimental design is the a nonequivalent group design, in
which the researcher does not do the allocation at all, but nature does. For example,
participants may select themselves into one or the other group. The researcher must
now measure relevant variables in a pretest and compare outcomes only for subjects
that have similar pretest scores:

� Janzen and Saiedian [11] describe a number of quasi-experiments in which test-driven develop-
ment was compared with traditional development. In test-driven development, tests are developed
before coding, and in traditional development, tests are developed after coding. The goal was to
find any differences in simplicity, cohesion, and coupling of the code developed by these methods.

The experimental groups included practitioners who volunteered for the experiments and
graduate and undergraduate students who participated in a course. Pretests were used to detect
any relevant differences between test-first and test-last groups, i.e., differences in variables that
could influence the outcomes. Variables tested for were programming experience, age, and
acceptance of test-driven development [11, p. 79].

Any effect of detected differences were blocked out by only comparing test-first and test-last
groups with similar pretest scores. Other conditions were held constant. Instruction in the relevant
test-first and test-last methods was done as impartially as possible to avoid any influence of teacher
preference for one or the other method.

One outcome was that test-first programmers tended to write smaller and simpler methods and
classes. This suggests a causal influence of test-first programming on writing smaller methods and
classes. Perhaps the mechanism for this is that programmers who once did test-first programming
will always keep attention for the testability of their programs and write simpler programs that are
better testable than more complex programs.

In a second kind of quasi-experimental design, the researcher allocates treatments
nonrandomly, according to a criterion. This is called a regression discontinuity
design, because the researcher hopes that at the cutoff point of the criterion, a
discontinuity in outcomes will appear. If it appears, the researcher will try to reason
that this discontinuity can be attributed to the experimental treatment:

� Suppose you want to investigate whether your new experimental programming technique has
an effect on programming effort. In your software engineering class, there is a group of highly
competent students who finish 1 week ahead of the rest, and you decide to test the technique on
them. They do a programming assignment using your technique. Suppose that you have managed
to keep all relevant conditions identical to the conditions in the rest of the class: task difficulty,
program size, time of day, and teaching method. A plot of programming effort against student
competence reveals that higher competence corresponds to lower effort but that for the treatment
group there is an additional drop in programming effort that is unlikely to be explainable by the
higher competence of these students alone. This is evidence that for these highly competent
students, your new technique reduces programming effort compared to the other techniques used
in the class.

A third quasi-experimental design is the interrupted time-series design. This is
a longitudinal design in which objects of study are monitored for a while before
and after a treatment is applied, and it is hoped that at the time of the treatment
a discontinuity in outcomes will appear that can be attributed to the experimental
treatment:

� Kitchenham et al. [13] investigated the quality of reports on human-centric software engineering
experiments published in the periods 1993–2002 and 2006–2010, to see if the intervening period,
2003–2005, can be viewed as break in a quality trend. Well-known guidelines for software
engineering experimentation have been published from 2000 to 2002 [12, 14, 31] and would have
had effect from about the year 2006 and later. This is an interrupted time-series design.
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The authors took care to construct a homogeneous sample from the two time periods, avoiding
a selection effect as much as possible. Each paper was assigned randomly to three authors,
and the three assessments were done according to objective scoring rules, to avoid assignment
effects. Interrater agreement was assessed and found to be acceptable. The authors found a
steady increase in quality over the two time periods but no clear break in the trend (acceleration or
otherwise) in the intervening period.

Shadish et al. [26] give an exhaustive overview of quasi-experimental designs.
Cook and Campbell [3] give more information on statistical inference in quasi-
experimental designs, as does the more recent treatment by West [30]. Berk [2]
provides an insightful methodological analysis of quasi-experimental designs.
Treatments of quasi-experimental designs in software engineering are given by
Juristo and Moreno [12] and by Wohlin et al. [32].

Whatever the sampling or allocation mechanism, in quasi-experimental designs
the researcher must do at least one pretest to measure systematic differences
between treatment groups and do at least one posttest to check if these variables
have changed and could therefore have influenced the outcome. Causal reasoning
now takes the following form:

• If all relevant variables Ui are included in the pretest and posttest measurements,
• and two samples are exposed to A and B , respectively,
• and the difference between the pretest and posttest values of Ui does not provide

a full explanation of a measured difference dAB D Y A � Y B , then
• the difference between A and B must have caused part of the difference dAB.

There are some very important differences with RCTs. First, there is no requirement
of random sampling. This means that if we use statistical inference to infer a
statistical model, there is a displacement (bias) with respect to the true statistical
model. Second, there is no requirement of random allocation. This too introduces a
displacement in any statistical model that we would infer from the samples.

If all relevant variables Ui have the same values in both samples and in pretest
and in posttest measurements, they did not change and cannot have had an influence.
The causal conclusion is then that

at the measured levels ui , the effect of the difference between A and B on the sample is
dAB.

Otherwise, if the measured levels of Ui differ across samples or have changed
during the experiment, we must assume that they may have had an effect. If we
cannot quantify this effect, we can still use qualitative reasoning as illustrated above.

One of the assumptions of causal inference from quasi-experiments is that we
have included all relevant variables. But when is a variable “relevant”? For this we
need a theory of the experiment that includes all factors that may influence A. The
discussion of the validity of a causal inference is in fact a discussion of this theory
and of the degree of support that this theory gives to a claim that the difference
between A and B contributed to the difference in Y :

� In the quasi-experiment of Janzen and Saiedian described above, variables measured in pretests
were programming experience, age, and acceptance of test-driven development [11, p. 79]. The
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theory of the experiment is that differences in these variables could influence the simplicity,
cohesion, and coupling of the code and that to detect any relevant differences between test-first
and test-last groups, the effects of these other variables should be kept constant. The theory
also includes the assumption that the effect of the difference between test-first and test-last
development is independent of these other variables.

14.2.3 Validity of Causal Explanations

Causal inference is ampliative and has to be supported by arguments that do
not provide total certainty. Many of the factors that should be considered when
searching for a causal explanation of outcomes are listed in Table 14.2.1 These
factors should be controlled when designing and executing the research, and any
factors that could not be controlled should be included in the list of possible causal
explanations of the outcome.

An ambiguous relationship between X and Y makes it hard to exclude the
possibility of a causal relationship between X and Y . Correlation could be nonzero
but low, temporal precedence may be ambiguous, and a spatial connection may be
present but tenuous.

The object of study may experience various mechanisms that may disturb or
invalidate causal inference. The checklist in Table 14.2 mentions the following:

• Unit interaction: Objects of study may interact during a study.
• History: Events in the context of the experiment, unrelated to the treatment, may

influence the OoS.
• Maturation: Some components of an object of study, e.g., people, can change

during the study, for example, by getting older or by getting tired.
• Dropout (also called attrition or mortality): People can drop out of an investiga-

tion too early, influencing the sample statistics and their variance.

Table 14.2 Some threats to internal validity of a causal inference

• Ambiguous relationship: ambiguous covariation, ambiguous temporal ordering, ambigu-
ous spatial connection?

• OoS dynamics: could there be interaction among OoSs? Could there be historical events,
maturation, dropout of OoSs?

• Sampling influence: could the selection mechanism influence the OoSs? Could there be
a regression effect?

• Treatment control: what other factors than the treatment could influence the OoSs? The
treatment allocation mechanism, the experimental setup, the experimenters and their
expectations, the novelty of the treatment, compensation by the researcher, resentment
about the allocation?

• Treatment instrument validity: do the treatment instruments have the effect on the OoS
that you claim they have?

• Measurement influence: will measurement influence the OoSs?
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Sampling may involve some mechanisms that are relevant for causal inference too.
If subjects are selected on a criterion, or if they self-select, there may be systematic
differences among groups that will affect outcomes. Even random selection and
allocation may influence the subjects of these selection decisions. For example,
subjects may feel flattered and work extra hard. This is called a selection effect.

Different, but equally relevant, is the so-called regression effect. If selected
objects score extremely low (or high) on some property before being selected into a
sample or into a treatment, then they are likely to perform better (or worse) on the
same property during the experiment. This is called regression toward the mean. In
the long run, this is a random fluctuation, but in the short run, it might be mistaken
for a treatment effect.

Treatment must be controlled, which means that the experimenter must control
other influences than the treatment. The checklist in Table 14.2 mentions the
following:

• Selection. Nonrandom selection or allocation introduces systematic bias into a
sample or group.

• Experimental setup. Subjects may respond to the experimental setup: the location
in a special room, lighting, noise, special equipment, etc.

• Experimenter expectation. Experimenters may hope for a particular outcome,
causing them to behave in a certain way. This may influence the outcome.

• Novelty. Subjects who perceive the treatment to be novel may respond to this
novelty.

• Experimenter compensation. Experimenters who know that a subject is getting a
treatment believed not to be effective may compensate for this by providing extra
care for these subjects.

• Subject rivalry or demoralization. Subjects who know that they have not been
selected into a promising treatment may compensate for this by working extra
hard. Or they may get demoralized and work less hard.

Shadish et al. [26, p. 73] classify these factors as threats to construct validity. If any
of them is present, the researchers are in fact applying another treatment than they
think that they are applying.

All of the above threats can be mitigated by keeping both experimenter and
subjects unaware of which treatment is being applied. This is not possible in
software engineering, where subjects know which technique they are applying.
These threats to treatment validity can still be mitigated by repeating the treatment
but now with switched allocations, which is called a crossover design. This may
create maturation effects in the objects of study, because they may learn something
from the first treatment that they can apply in the second. In Chap. 20 on statistical
difference-making experiments, we show a design that has dealt with a number
of these threats. Any threats that remain after designing the experiment must be
blocked out computationally in some way in the statistical and causal inferences.

Returning to Table 14.2, treatments need instruments, and these need to be
validated on their effectiveness. Will instruction sheets or lessons be understood
as intended? Are they clear and unambiguous? Will they be used or ignored? If the
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treatment requires software, would this provide occasion for the students to chat
online with other subjects or with their friends?

Measurement is relevant for causal reasoning, because measurement can influ-
ence the measured phenomena. If such an influence occurs, it is called a testing
effect. Measurement instruments like interviews and questionnaires have some
influence on subjects, and the relevance of this effect should be assessed in causal
inference.

14.3 Architectural Explanations

Recall from Chap. 9 (Scientific Theories) that an architectural explanation says that

phenomenon E happened in the object of study because components C1; : : : ; Cn of the
object of study interacted to produce E .

The interactions that produced E are collectively called the mechanism that
produced E . Mechanisms may be deterministic or nondeterministic, i.e., they
can produce their phenomenon always, or according to some possibly unknown
probability distribution. Architectural explanation of E is also called architectural
inference.

To give an architectural explanation of a phenomenon in an object of study, we
need to show that the OoS has an architecture with components whose interaction
produced the phenomenon. To do this, we need to analyze which interactions are
possible given the capabilities/limitations of the components and the architecture
of the object of study. This is an analytic activity, as we analyze an architectural
structure to understand how global phenomena were produced.

Note also that the capabilities of components are unobservable. We can observe
how a component behaves in a particular situation, but we cannot observe its capa-
bilities. In architectural explanation, we often make assumptions about component
capabilities that must be verified when we apply the explanation on a particular
case:

� In the MARP problem [17], a simulation was run of a busy day at Schiphol airport, and delays
experienced by aircraft in the simulation were measured. Delays were smaller than on the real
airport at a similarly busy day. A causal explanation of this is that the aircraft were intelligent agents
that could dynamically adapt their taxi route planning to incidents. The delay reduction was caused
by the MARP treatment.

But why does the MARP treatment reduce delays? This question became urgent once it
became evident that in random route networks, the MARP treatment did not reduce delays at
all. Can this be explained? The analysis of the simulations revealed two architectural explanations
why MARP reduced delays at airports:

– A small set of starting points and destinations at the edge of the infrastructure produces queues
of agents moving in the same direction.

– An even spread of arrival and departure times produces small queues.

These phenomena reduced the number of incidents in which an agent had to wait for a higher-
priority agent to enter a resource first and made it possible to respond to incidents that did occur
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in a way that would not cause delays in other aircraft. Note that these explanations are analytic
and qualitative. They follow from a logical analysis of the architecture of a airport-aircraft system,
the physical layout of the routes, and the behavior of aircraft, but they cannot explain the exact
delay reduction numerically. Note also that in this case, component capabilities are known. The
components have been designed by the researcher to have multi-agent route planning capabilities.

� A report in a Dutch IT magazine about failures of government IT projects focused on the tendering
process [8]. Tendering seems to cause projects to finish over time and over budget.

To give an architectural explanation of this, we decompose the tendering process into one client
(a government organization) who puts out a call for tender and two or more vendors competing in
the call. Several mechanisms for failure in this architecture have been identified, including the
following two:

– In an attempt to eliminate risks, government organizations specify requirements in a call for
tender in great detail. This makes tendering more expensive than it would otherwise have been.
And if requirements are not known in detail in advance of the project, it will cause problems
later on, for example, when requirements change.

– In order to get their project proposal accepted by decision-makers higher up in government,
government organizations tend to estimate project cost too low. Suppliers tend to go along with
this in order to win the tender: They know they can bill extra time later on. This mechanism is
almost guaranteed to lead to time and budget overruns.

In this example, we assume that all governments have these capabilities and limitations. When
we apply this explanation to a particular tendering process, we must verify them. Perhaps we
encounter a case where government organizations do not have these limitations.

� The study by Sabherwal [23] explained informal coordination at the start of an outsourcing project
causally by the fact that vendors present outsourcing as an informal partnering relationship. We
can now reframe this explanation architecturally. The architecture of the situation is simple. Its
components are vendors and clients, and they interact by marketing, searching, contracting, and
outsourcing activities. The causal explanation can be explained architecturally if we assume that
vendors want to acquire clients even if these misunderstand the coordination requirements of out-
sourcing and if we assume that clients have no experience with outsourcing. This would explain that
vendors misrepresent coordination requirements and that clients believe this misrepresentation.
This architectural explanation refers to components and their capabilities and limitations. It also
makes the scope of the original causal explanation clear, as the causal explanation will not be valid
in cases where vendors and clients have other capabilities and limitations.

� The causal explanation of the phenomena studied by Hildebrand et al. [9] is that a consumer
preference change was caused by feedback. As we have seen earlier, Hildebrand et al. give
an explanation of this in terms of the capabilities and limitations of people, e.g., the tendency
to conform to the opinion of peers. Prior scientific research makes plausible that most people have
this particular capability/limitation.

These examples illustrate that architectural explanations can explain causal rela-
tionships and do so analytically in terms of architectural components and their
capabilities and in terms of mechanisms by which these components interact to
produce the phenomenon of interest.

As an aside, note also that threats to validity of causal explanations (Table 14.2,
p. 187) are themselves architectural explanations of possible causal influences.

14.3.1 Research Designs for Architectural Inference

If architectural explanations are analytical, why do we need empirical research?
We can give an architectural explanation once we have an architectural model.
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The following examples illustrate that we need empirical research to check the
assumptions made by an architectural explanation. Some of these assumptions are
idealizations about the capabilities of components, and these have to be checked in
each case to which the explanation is applied.

In addition, in the case of real-world research, we need to check if the mech-
anisms postulated by the explanation still occur when other potentially interfering
mechanisms are present too. Just as for purely causal explanations a multitude of
factors not mentioned in the explanation can drown the causal relationship that
we are interested in, for architectural explanations a multitude of mechanisms not
mentioned in the explanation can interfere and eventually kill the mechanisms that
we are interested in [19]:

� In the DOA project, an analysis of the architecture of the context of array antennas allows one
to prove that � D 2� .d=�/sin � , where d is the distance between adjacent antennas, � is the
wavelength, � is the angle of incidence, and � is the phase difference of a wave between two
adjacent antennas. The assumptions of this analysis are that waves are plane, i.e., that the wave
source is infinitely far away, and that if more than one plane wave arrives at an antenna, these do
not interfere. These assumptions are strictly false in the real world, but in the intended application
domain (TV reception by cars), they are nearly satisfied. Empirical research is still needed to check
whether the formula still holds for antenna’s and waves in the real world.

� In the MARP project, architectural explanations were developed in two rounds. In the first round,
an analytical argument made plausible that multi-agent route planning could reduce delays. This
argument was architectural, as it referred to components (agents) and their capabilities (dynamic
route planning) and interactions (incidents). In the second round, empirical data from simulations
showed that delays sometimes reduced and sometimes increases. A new analytical argument was
found that explained this in terms of agent behavior in airports and in random networks.

� In the government tendering example, the architecture of tendering processes was known in
advance, and empirical research showed that tendering caused projects to be over time and
budget. Architectural analysis explained this in terms of capabilities and limitations of government
organizations and software vendors. This analysis made assumptions based on the behavior of
these actors that were observed in case studies.

The examples illustrate that architectural inference is case based, not sample based.
It is about the architecture of population elements, not about the properties of
samples of population elements or about the population distribution of a variable.

Table 14.3 shows three case-based research designs that we have briefly dis-
cussed in Chaps. 5 and 7 on implementation evaluation and treatment validation. In
an observational case study, the researcher studies a single case without intervening
and explains observations in terms of the case architecture. This can be used in
implementation evaluation. In a single-case mechanism experiment, the researcher
experiments with a single case and explains observed behavior in terms of the case
architecture. This can be used to evaluate implementations as well as to validate
treatments. In technical action research, the researcher uses an artifact to help a
client and explains the outcome architecturally in terms of the case. We illustrate
these methods in detail in Chaps. 17 to 19. Here, we discuss guidelines for how to
infer mechanisms and architectures.
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Table 14.3 Three research designs to support architectural inference. The numbers between brackets
refer to the chapters where these designs are explained

Observational Experimental

Case � Observational case study (17) � Single-case experiment (18)
� Technical action research (19)

Sample — —

14.3.2 Inferring Mechanisms in a Known Architecture

When you investigate an artifact in a context, then the architecture of the artifact
has been designed, and the architecture of the context is given. What knowledge
can we use to infer mechanisms in these architectures and mechanisms in the
interaction between these architectures? In our examples, we have seen several kinds
of knowledge sources:

� Scientific theory and design knowledge. In the DOA example, the architectural analysis is done
using knowledge from physics, design properties of an antenna, and some mathematical theory.

� Scientific theory. In the consumer feedback example, there is an architectural analysis too, in terms
of social mechanisms of human actors [9]. These mechanisms arise from affective capabilities and
limitations of the human actors that are known to exist from social psychology.

� Useful facts and design knowledge. Architectural analysis in the MARP example was done based
on useful facts about airports and design knowledge about the capabilities of actors in an MARP
system.

� Primary documents and practical knowledge of subjects. The mechanisms in the government by
studying primary documents in these cases and interviewing subjects.

� Practical knowledge of subjects. The conceptual models of the ARE project [20] were found by
interviewing subjects and reading the professional literature about agile projects.

This is the knowledge context of design science research as listed in Chap. 1 (p. 7),
extended with subject knowledge from the context of the artifact itself. In social
systems, we often need subject knowledge to infer social mechanisms.

14.3.3 Inferring Architectures

Inferring unknown architectures is more difficult than inferring mechanisms in
known architectures. Major breakthroughs in the history of science are often
discoveries of previously unknown architectures. For example, astronomers made a
major breakthrough when they finally understood the architecture and mechanisms
of the solar system [15], and biologists made a major breakthrough when they
finally understood the components and mechanisms of fermentation [1]. In the
social sciences, discovery of an architecture is often less dramatic. Often, the people
participating in a social system are aware of architectural structures of the system.
Here are two examples. The first example shows how a social architecture can
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Fig. 14.2 Some perceived influences of requirements engineering improvement, reported in a case
study by Damian and Chisan [4]

be uncovered; the second is a spectacular example of discovery of a biological
architecture:

� Damian and Chisan [4] studied a software development organization in which requirements
engineering was introduced. Figure 14.2 shows the results of opinion surveys of developers in
the organization about the impact of the introduction of requirements engineering. The nodes
in the graph are variables; the arrows are causal influences perceived by stakeholders in the
development organization. In other words, the diagram represents the theory that developers in
the studied organization have about the effects of the introduction of requirements engineering in
their organization. It is a causal theory.

Figure 14.3 shows the architecture of the organization after requirements engineering practices
had been implemented. This diagram is extracted from the descriptions by Damian and Chisan,
who in turn acquired the information from primary documents and from interviews with develop-
ers:

– Change management is implemented by the change control board. Previously, customers could
contact developers directly with requests for new requirements, which is a mechanism that
contributes to requirements creep. The change control board prevents this mechanism to occur
and so reduces requirements creep, which in turn makes effort estimates more accurate.

– All other root variables in Fig. 14.2 are activities performed by the cross-functional team, which
is a team of representatives from design, programming, testing, and product management that
meets weekly to discuss requirements, design, tests, and coding. Compared to the period
before the introduction of cross-functional teams, this improved effort estimation too, as well
as feature coverage, and the quality of communication among developers, and it reduced
requirements creep, the amount of rework, and the number of defects.
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The causal model in Fig. 14.2 says which variables are believed by developers to influence which
other variables. The architectural model in Fig. 14.3 explains how these perceived influences came
about. The variables in the causal model are properties of the components or of interactions
between components in the architectural model.

� In the mid-nineteenth century, John Snow inferred that cholera was transmitted by invisible agents,
now called germs. The then dominant theory was that cholera was transmitted by poisonous
particles in the air, the so-called miasma theory. Snow’s proposed mechanism of transmission is
that small organisms (germs) pass into the alimentary system by means of food or drink and then
spread a poison that causes the body to expel water. The organisms pass out of the body with
these evacuations, contaminating water supplies, from which it infected new victims. The problem
is that all of this assumes invisible components (germs) with unknown capabilities that interacts
with the body to produce a disease by a hitherto unknown mechanism. Snow’s reasoning is an
exemplar of architectural inference, which is why we frame it in Table 14.3.3 [6,27–29].

14.3.4 Validity of Architectural Explanations

An architectural explanation explains a phenomenon in terms of component inter-
actions. There are three ways in which an architectural explanation is fallible: It
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Table 14.4 Architectural inference strategies used by Snow to support his theory that cholera is
transmitted by germs

– Multiple case studies: Snow investigated individual disease cases. However, one case
study, e.g., one patient history, is not enough, and he studied many

– Detailed data collection: each case is investigated in detail. Snow talked to every surviving
patient that he could track and to family and neighbors of patients who had died and
collected data about the physical location of water wells, sewers, water inlets of water
companies, sewage disposal locations, and the effect of the tides in rivers on sewage
floating in the river

– Selection of positive and negative cases: Snow investigated a great number of positive
cases, i.e., patients who contracted the disease, and negative cases, i.e., cases that could
have contracted the disease but did not. The positive cases could all be explained by
his hypothetical mechanism, e.g., because they drank from a polluted water supply. The
negative cases could be explained by their avoidance of such sources of pollution

– Analytical reasoning: Snow’s reasoning is analytical: In each individual case, he tried to
show that the case phenomena could only be explained by his hypothetical mechanism.
His reasoning resembles that of a lawyer trying to prove that an actor is guilty, trying
to maintain the highest standards of analytical rigor because the accused was hitherto
unknown and is still invisible

– Alternative explanations: for each individual case, Snow considered all possible alterna-
tive explanations and showed in each case that they cannot explain his observations

– Reasoning by analogy: an important source for Snow’s germ hypothesis is the analogy
and disanalogy of the phenomena of transmission of cholera with the phenomena of trans-
mission of other diseases. Snow takes the most similar phenomena and hypothesizes a
similar mechanism compatible with the data

– Consistency with statistics: most of Snow’s arguments are qualitative, but he does give
some simple descriptive statistics to show that the locations of the patients match the
location of polluted water supplies. The statistics also show that the mechanism of germ
transmission is nondeterministic. Not all who drink from polluted water supply get cholera,
and not all of those who get cholera die. Neither Snow nor the rival “miasma” theory offers
explanations for this nondeterminism

may contain errors of analysis, the simplifying assumptions of the architecture
may be violated in a real-world case, and the real-world case contains additional
mechanisms that interfere with our conclusions (Table 14.3.4).

First, mistakes of analysis. We may have made mistakes when deriving that an
architecture will produce some effect. Mathematical proofs are usually analyzed
by mathematicians until they stand beyond unreasonable doubt, but for non-
mathematical arguments, reasonable doubt is already quite a stringent standard.

Second, the world is full of variation, and architectures are seldom encountered
in their pure form. The explanation may assume capabilities that the real-world
components may not have, and some components assumed by the explanation may
be entirely absent.

Third, every architectural explanation is an abstraction because it ignores many
components and mechanisms present in the real world but not mentioned in the



www.manaraa.com

196 14 Abductive Inference Design

Table 14.5 Requirements for the internal validity of an architectural explanation

• Analysis: the analysis of the architecture may not support its conclusions with mathemat-
ical certainty. Are components fully specified? Are interactions fully specified?

• Variation: do the real-world case components match the architectural components? Do
they have the same capabilities? Are all architectural components present in the real-
world case?

• Abstraction: does the architectural model used for explanation omit relevant elements of
real-world cases? Are the mechanisms in the architectural model interfered with by other
mechanisms, absent from the model but present in the real world case?

explanation. These may interfere with the components and mechanisms mentioned
in the explanation, rendering the explanation false in a real-world case:

� In the requirements engineering improvement example, the interaction between the cross-
functional team and the change control board may not have been analyzed properly, and the
conclusion that they prevent requirements creep does not follow literally from the definition of these
two teams.

� Even if there is no mistake of analysis, in a new case with a similar architecture, we may find
that the cross-functional team may not have the authority to make decisions as assumed by
the architectural model. In this variant of the architecture, not all phenomena that occur may be
explainable in the same way as in the previous case.

� In a new case with a similar architecture, we may find that even though the components have
the same capabilities as in the previous case, there are additional mechanisms, not mentioned in
the explanations so far, that interfere with the explanatory mechanisms of the previous case. For
example, members of a change control board in the new case may have to deal with pressures
from the sales department to favor particular customers.

14.4 Rational Explanations

14.4.1 Goals and Reasons

A rational explanation explains the behavior of an actor in terms of the goals of the
actor. It says that

a phenomenon occurred because the actor wanted to achieve a goal.

This sounds somewhat like the contribution arguments discussed in Chap. 6
(Requirements Specification), but there is an important difference. A contribution
argument says that an artifact that satisfies the requirements will contribute to
stakeholder goals. This argument is given by the designer and agreed on with the
stakeholders. In empirical research, by contrast, the researcher does not have to
agree with the goals of the actors, and he or she does not have to believe that the
actions performed by the actors contribute to their goals. The researcher just simply
explains actions of an actor in terms of the actor’s belief that they will contribute to
their goals.
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Table 14.6 Threats to the internal validity of a rational explanation

• Goals: The actor may not have the goals that the explanation says it has
• Motivation: a goal may not motivate an actor as much as the explanation says it did

To do this, the researcher does have to adopt some of the concepts used by the
actors that he or she studies. The following example takes an architectural point of
view, where the architecture components are social actors with goals:

� Myers [18] explains the failure of an information systems implementation project performed for
the New Zealand government. Goals of different stakeholders motivated actions that were rational
compared to these goals. However, the combined effect of all these locally rational actions led to
a very expensive project failure, which became all the more disastrous because it was the goal of
one of the stakeholders to make this failure visible to as many members of the general public as
possible [18, p. 197].

This illustrates that architectural explanations can be combined with rational
explanations. We have already seen an example of this earlier when we discussed
the ARE project in Chap. 9 (p. 99).

14.4.2 Validity of Rational Explanations

Table 14.4.2 lists threats to the validity of rational explanations. For example, the
explanation may attribute goals to an actor in a case that the actor does not, in fact,
have. Or the explanation may suppose that an actor performed an action to achieve
a goal while the actor in fact did not have that motivation:

• In the highly politicized situation that Myers [18] investigated, actors may have misrepresented their
goals and may have had other motivations than the ones they stated to the researcher.

14.5 Internal Validity

Abductive reasoning is fallible, and the internal validity of an explanation is
the degree of support for the abductive inference that has led to it.2 Threats to
the validity of causal, architectural, and rational explanations have been listed in
Tables 14.2, 14.3.4, and 14.4.2. They are all parts of our checklist.

14.6 Summary

• Abductive inference is searching for the best possible explanation of a case
description or statistical model.
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• Causal explanations explain a phenomenon by an earlier phenomenon that
caused it. Various cross-sectional and longitudinal designs can support such an
explanation, among which are the classical randomized controlled trial and quasi-
experiments.

• Architectural explanations explain a phenomenon by a mechanism that produced
it. The mechanism is an interaction among architectural components. There is
a variety of research designs that can provide data to support an architectural
explanation.

• Rational explanations explain an actor’s actions in terms of reasons for those
actions, which are defined in terms of the actor’s goals. Rational explanations
usually assume a social architecture in which the actor plays a role.

Notes

1Page 187, threats to the validity of causal inference. This is the list of important threats to
internal validity given by Shadish et al. [26, p. 55], minus the threat of instrumentation, plus the
threat of unit interaction. Instrumentation has been listed in this book earlier, both as a threat to
treatment validity and as a threat to measurement validity. The absence of unit interaction is part of
Rubin’s [22] stable unit treatment value assumption (SUTVA), the other part being the absence
of a allocation effect. The absence of selection effects is called strong ignorability by Rubin [21].

2 Page 197, internal validity. Shadish et al. define internal validity as the validity of inferences
about whether the relationship between two variables is causal (p. 508). It is called internal to
contrast it with validity outside the study setting, which is called external [3, p. 37]. Because we
recognize three different kinds of explanations, internal validity in this book includes the validity
of causal, architectural, and rational explanations.
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Chapter 15
Analogic Inference Design

Analogic inference is generalization by similarity. In our schema of inferences
(Fig. 15.1), analogic inference is done after abductive inference. What we generalize
about by analogy is not a description of phenomena, nor a statistical model of
a population, but an explanation. In Sect. 15.1, we show that it can be used in
case-based and in sample-based research. In Sect. 15.2, we contrast feature-based
similarity with architectural similarity and show that architectural similarity gives
a better basis for generalization than feature-based similarity. Analogic generali-
zation is done by induction over a series of positive and negative cases, called
analytical induction (Sect. 15.3). We discuss the validity of analogic generalizations
in Sect. 15.4 and generalize the concept of generalization to that of a theory of
similitude in Sect. 15.5.

15.1 Analogic Inference in Case-Based and in Sample-Based
Research

In case-based research, after explanations for case observations have been found,
we assess the generalizability of these explanations by assessing in which archi-
tecturally similar cases similar mechanisms could produce similar phenomena.
In sample-based research, after explanations for a statistical model have been found,
we assess if these models could also be valid for similar populations. Here are two
examples, the first case based and the second sample based:

� Take again the case study of Sabherwal [14]. We saw that if vendors want to acquire clients
even if these misunderstand the coordination requirements of outsourcing, and if clients have
no experience with outsourcing there is an architectural mechanism that produces a low level
of formalization early in the outsourcing project. We now infer analogically that this mechanism
could happen in cases with a similar architecture too. We cannot predict with certainty that this
will happen in all similar cases, because the components in these other cases may have other
capabilities and limitations, and there may be additional mechanisms, such as legal requirements

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__15
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Fig. 15.1 Analogic inference generalizes to similar cases or populations

on outsourcing, that can interfere the mechanism generalized about. We have to check this on a
case-by-case basis.

� The other example discussed at the start of the previous chapter is the sample-based study
by Hildebrand et al. [5]. We saw that feedback causes consumers to change their preferences
in the direction of the feedback, and an architectural explanation of this refers to the social-
psychological mechanism that people tend to conform to the opinion of peers. This allows the
analogic generalization that other people in the same situation will behave similarly. Note that
these explanations and generalizations are sample based. They are about what people do on
the average. Since they are based on sample averages, the explanation and generalization are
nondeterministic. Some people behave differently. We have to check this on a case-by-case basis.

These examples illustrate that analogic generalization is qualitative: We indicate
to which other cases, or populations of cases, an explanation can be generalized,
without indicating to how many of them we can generalize. The examples also
illustrate that what we really generalize about is the explanations, more in particular
about the mechanisms that are referred to in our architectural explanations.

An analogic generalization is always case based and has the following form:

In cases similar to this, it is plausible that this explanation is true.

This leaves us with the question how to define similarity. We can do this in a
feature-based and an architectural way.

15.2 Architectural Similarity Versus Feature-Based
Similarity

In the above examples, analogic generalization is done by looking at architectural
similarity. If we would restrict ourselves to variables, we would only be looking at
feature-based similarity, such as similarity in size, number, age, volume, speed,
etc. But similarity of features alone is a weak basis for generalization.

� Walnuts have a similar appearance to brains, but this does not imply that walnuts are intelligent.
The magical belief that eating walnuts improves your brain is based on feature similarity, but this
belief is false.

� On rare occasions, feature-based analogies may lead to correct conclusions. For example, in
1749, Benjamin Franklin saw many shared features between lightning and “electric fluid” in his
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laboratory [1, p. 197]: They both gave light, were crooked and swift, made a crackling noise, killed
animals, and melted metals. In the laboratory, “electric fluid” was attracted by a metal rod. His
conclusion by analogic inference was that lightning would be attracted by a metal rod too. An
experiment proved him right.

Both examples contain feature-based analogies, because these analogies are not
based on an understanding of mechanisms in the underlying architecture that could
justify the analogy. The basis of both arguments is similarity in features, which is
also the basis of sympathetic magic and wishful thinking. Very rarely, that kind of
reasoning can lead to a correct conclusion, as in the second example. We now know
that the composition of lightning and of “electric fluid” in Franklin’s laboratory is
the same, and it contains a mechanism that produces a similar effect in both cases.
Franklin did not know that and coincidentally produced a correct conclusion for
reasons not known to him.

We will require that analogic inference be based on architectural similarity:
Source and target of the generalization must be cases with similar architecture that
have components with similar capabilities and limitations so that they will respond
to stimuli in a similar way. All examples of architectural explanations given in this
book are candidates for analogic generalization:

� The DOA example defines an architecture for antenna arrays that the researchers then generalize
about.

� The MARP example defines an architecture of airport logistics, which is then generalized about.
� Damian and Chisan’s [3] case study of requirements engineering defines an architecture of

development organizations that is generalized about.
� The two case studies by Mockus et al. [10], which we will describe below, define an architecture of

open source projects generalized about.

Whenever we can give an architectural explanation, we are in a position to gener-
alize to architecturally similar cases. The general form of analogic generalization is
now this:

In cases with an architecture like this, it is plausible that this explanation is true.

The explanation itself can still be causal or architectural.
How do we know what the relevant similarity predicate is? For this we need

analytical induction.

15.3 Analytical Induction

In analytical induction, an explanatory theory is tested by selecting cases with
varying architectures, all similar to each other, but different enough to run the risk of
not being able to reproduce the phenomenon.1 Replications as well as falsifications
are used to revise the theory so that it can explain all confirmations as well all
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falsifications. When a case falsifies a theory, the theory can be revised in two
ways:

• The conceptual framework of the theory can be changed so that the falsifying
case is not in the scope of the theory anymore.

• The generalization of the theory can be changed so that it is valid for all cases in
scope so far.

Here are three examples:

� A nonstandard example from mathematics may clarify the process of analytical induction. The
philosopher and historian of science Imre Lakatos analyzed and rationally reconstructed the history
of the proof of Euler’s conjecture that for a regular polyhedron, V � E C F D 2, where V is the
number of vertices, E the number of edges, and F the number of faces [8]. The proof is explained
in terms of physical polyhedra made of rubber. Let us view these polyhedra as members of a
population of similar physical polyhedra, some made of rubber, others made of wood, etc. Due to
architectural similarity, what can be shown to be true of the polyhedra made of rubber, where the
conclusion only depends on the architectural properties of the polyhedra, can be generalized to
polyhedra made of wood too.
Lakatos’ [8, p. 7] initial proof goes as follows. First, the researcher removes one face of a
polyhedron. For the remaining form, it remains to be proven that V � E C F D 1. The researcher
flattens the rest of the rubber polyhedron by stretching it out and then systematically removes parts
of it according to a procedure that does not affect the equation V �ECF D 1. An analytic argument
shows that when the removal procedure ends, i.e., cannot be applied anymore, a triangle is left.
For this triangle, V �E CF D 1 is true. Reasoning back, for the original polyhedron, V �E CF D 2

is true.
To see this as an example of analytical induction, consider the removal procedure as a mechanism,
executed by the researcher, that has a predicted effect, namely, preserving the truth value of V �
E C F D 1.
Lakatos shows that the proof has a history, in which mathematicians found counterexamples to
the proof, namely, examples of polyhedra for which the removal mechanism does not produce
the desired effect. One such counterexample is a hollow polyhedron, consisting of a large one
containing a smaller one. There is a surprising number of counterexamples. Let us view these
counterexamples as negative cases: They are examples for which the generalization V �ECF D 2

is false.
Each counterexample is dealt with by either changing the definition of the concept of a regular
polyhedron, so that the counterexample is not element of the population of regular polyhedra
anymore, or with changing the mechanism description, i.e., the removal procedure, so that the
counterexample, and all previously tried cases, behaves properly under the redefined mechanism.
This is analytical induction over a series of thought experiments in which imaginary mechanisms
are tested in a mathematical structure. In this analytical induction, the generalization itself is saved,
but the conceptual framework and mechanism descriptions are changed when negative cases are
encountered.

� In the MARP example, simulations showed that multi-agent planning causes delay reduction during
a busy day on Schiphol airport. By analogy, we infer that it will cause delay reductions on a busy
day on any airport. What about a large airport during a strike, so that only three planes land
that day? Or a small airport consisting of one runway, receiving 600 airplanes? These extreme
cases falsify the claim of delay reduction. We can solve this by restricting our definition of airports
to exclude extreme cases like this, e.g., by requiring a minimum number of runways for a given
number of arriving airplanes. It is not unreasonable to exclude these extreme cases as not being
similar enough to the airports for which these algorithms are intended to be useful. So we save the
generalization by changing the definition of “airport.”

� Mockus et al. [9] analyzed development and maintenance of the Apache and Mozilla open source
projects. In the Apache case, they observed that the project has a core of about 10–15 developers
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who controlled the code base and created approximately 80 % or more of new functionality. This is
a descriptive inference.
They explained this architecturally by the following mechanism [9, p. 9]:

– (Apache mechanism): “The core developers must work closely together, each with fairly
detailed knowledge of what other core members are doing. Without such knowledge they would
frequently make incompatible changes to the code. Since they form essentially a single team,
they can be overwhelmed by communication and coordination overhead issues that typically
limit the size of effective teams to 10–15 people.”

This is an abductive inference.
To check whether we can generalize to architecturally similar projects, they investigated the Mozilla
project. This is architecturally similar, yet different from the Apache project. It had a core of 22–36
developers who coordinated their work according to a concretely defined process and used a strict
inspection policy and who each had control of a module and created approximately 80 % or more
of new functionality. The authors therefore refined their explanation [10, p. 340]:

– (Apache and Mozilla mechanism): Open source developments have a core of developers who
control the code base, and will create approximately 80 % or more of the new functionality. If
this core group uses only informal ad hoc means of coordinating their work, the group will be
no larger than 10–15 people.

Note that this refined explanation addresses both cases. The generalization is saved by reducing
its scope.

Confirmation of a generalization in a new case study is gratifying and strengthens
the support for the generalization. Falsification is more interesting, because it allows
us to sharpen our conceptual framework, redefine a mechanism, or limit the scope
of our generalization. Analytical induction proceeds until no negative cases can be
found anymore or when the research budget is finished, whichever occurs first.

Analytical induction is used in case-based research, but as we saw above
nothing prevents it from being used in sample-based research as well. After
generalizing an architectural explanation of a statistical model to architecturally
similar populations, we can investigate similar as well as dissimilar populations
to check this generalization. If a confirmation is found, this is gratifying, and if a
falsification is found, we redefine the concepts or restrict the scope of the analogic
generalization. I am not aware of any examples of this in the literature.

15.4 External Validity

External validity is the degree of support for the generalization of a theory beyond
the cases or populations on which a theory has been tested.2 Table 15.1 lists
requirements for the external validity of a research design.3

To support analogic generalization, the object of study must satisfy the population
predicate. There will always be some mismatch, and the impact on this on
generalizability must be assessed. In addition, the object of study may be an instance
of more than one population predicate, and you have to check if your intended
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Table 15.1 Requirements for external validity of a research design, repeated from the validity of
research design (Chap. 11) and the validity of architectural explanation (Chap. 14)

• Object of study

- Population predicate: will the OoS satisfy the population predicate? In which way
will it be similar to the population elements? In which way will it be dissimilar?

- Ambiguity : will the OoS satisfy other population predicates too? What could be
the target of analogic generalization?

• Representative sampling

- Sample-based research: will the study population, described by the sampling
frame, be representative of the theoretical population?

- Case-based research: in what way will the selected sample of cases be represen-
tative of the population?

• Treatment

- Treatment similarity : is the specified treatment in the experiment similar to
treatments in the population?

- Compliance: is the treatment implemented as specified?
- Treatment control: what other factors than the treatment could influence the

OoSs? Could the implemented treatment be interpreted as another treatment?

• Measurement

- Construct validity : are the definitions of constructs to be measured valid? Clarity
of definitions, unambiguous application, avoidance of mono-operation and mono-
method bias?

- Measurement instrument validity : do the measurement instruments measure
what you claim that they measure?

- Construct levels: will the measured range of values be representative of the
population range of values?

generalization would be valid for any of these predicates. Could you be generalizing
to other populations too?

Sampling must satisfy some requirements too. In case-based research, to gener-
alize by analogy from the studied cases to the unstudied cases, we must assess how
representative the studied cases must be of the unstudied cases in the population.
But when is a case representative? Representativeness must be defined in terms
of architecture, and part of the goal of case-based research is to find out what
architecture is essential for the phenomena being studied. If a case has this
architecture, it can be regarded as representative of the population.

In sample-based research, statistical inference and interpretation of the results
will take us from the sample to the study population, which is the population
described by the sampling frame. Further generalization to the theoretical popu-
lation will be by analogy. To support that inference, the study population should be
representative, in a relevant sense, of the theoretical population.

To generalize about a treatment, the specified treatment must be similar to
treatments in the target population, and the implemented treatment must be com-
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pliant to its specification, i.e., it must be implemented as specified. Third, the
control requirements that support abductive reasoning also support generalization by
analogy. If any additional influence is present in the experiment, we could interpret
the experimental treatment differently from what is intended.

Measurements support analogic reasoning if constructs are operationalized and
measured in a valid way. So the requirements of construct validity as described in
Chap. 8 should be checked. In addition, instruments should be tested to check that
they measure what they should measure. If these requirements are not met, then
similarities may crumble away on closer inspection.

Finally, when generalizing the results to a population, we should consider
whether the measured data are representative of the data that could be found in
the population. If only a small range is measured, this is called construct level
confounding.

� For example, X and Y may have a linear relation when we measure only a small range of values
of a variable Y , but in the entire population the relationship may be nonlinear.

� If you measure the change in productivity of a new programming method and you test it only on
novice programmers, then it is hard to draw conclusions about effects on productivity of expert
programmers.

All of these requirements can be satisfied to a degree but not perfectly. Mis-
matches between the research design and these requirements are threats to the
validity of an analogic inference from this research.

15.5 Beyond External Validity: Theories of Similitude

In design science, we often study a validation model of an artifact in context, which
consists of a model of an artifact interacting with a model of a context. Here we are
not always interested in similarity of the model and its target, and external validity
is not exactly what we are after. It is sufficient to be able to learn something about
the implemented artifact in a real-world context by studying the behavior of the
validation model. This can be done by similarity, but also by difference. Here are
four different ways that have been used in design sciences to study the relation
between a validation model and its target:

� Mathematical similarity : In the years 1865–1867, the British engineer William Froude studied the
relation between the resistance to surface waves of a scale model of a boat in a water tank and
the resistance to surface waves of a real boat in open waters. If the dimensions of the real boat
are n times the dimensions of the model, the behavior of the real boat is similar to that of the
model if model velocities are multiplied by

p
n and resistance to surface waves with n3 [19, pp.

140, 292]. In the ensuing period, the method of dimensional analysis was developed, in which
behavior is expressed in formulas with dimensionless terms that are valid for scale models as well
as real-world artifacts [16]. Study of the scale model can thus yield information about the target
of the model. Dimensionless formulas describe the relevant similarity between scale models and
their targets.

� Architectural similarity : In drug research, animals are used as natural models to study how the
human body would respond to a drug. This is done by identifying the biochemical and physiological
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mechanism triggered by a drug and investigating whether this mechanism also occurs in human
beings. For example, Willner [20] reviews a number of physiological mechanisms that are shared
between humans and other species. If the effect of a drug is known to be produced by such a
shared mechanism, then the response of an animal of that species can be used as a model for the
response of humans to that drug. Theories based on the study of animals can thus be externally
valid with respect to human beings.

� Extreme cases: Another way to generalize from validation models to real-world targets is to test
extreme cases in the laboratory and reason that if something has been shown for an extreme case
in some dimension, it will probably also be true for less extreme cases. For example, in the study of
Prechelt et al. [11], the effect of a source code commenting technique on maintenance effort was
studied in a laboratory experiment. They reasoned that if this positive effect occurs in the relatively
small and well-documented programs in the laboratory, the effect may be even more pronounced
for larger and ill-documented programs in the real world [11, p. 604]. This is called exterme-case
reasoning. It generalizes by dissimilarity.

� Empirical similarity : Generalizability from a validation model to its real-world target is an empirical
problem: If you want to know if generalization G about population A of laboratory models is also
valid for population B of real-world targets, you test it on a sample of population B [4]. A number of
software engineering researchers have done this to check if results obtained for students are valid
for professionals too. Holt et al. [6], Höst et al. [7], Runeson [13], and Svahnberg et al. [17] all gave
some task to different groups of students and professionals and measured the outcomes. They
found some difference between graduates and professionals but found a larger difference between
freshmen and professionals, for example, in the spread of some performance characteristics and
difference in the mental models of programs.

All of these approaches require a theory of similitude between a validation model
and its target. A theory of similitude has the following form:

• If the validation model and its real-world target have similarities S and differ-
ences D,

• and if the validation model has been observed to have properties P ,
• then the target has possibly different properties P 0, other things being equal.

This generalizes analogic generalization, because the argument can be based on
similarities or differences, and the target of generalization may show similar or
dissimilar behavior. The theory of similitude should tell us how similar or how
different. A theory like this requires empirical support like any other scientific
theory. It is itself a generalization and is fallible, as expressed by the “other things
being equal” phrase. Each of the above examples yields a theory of similitude.

The mathematical approach illustrated above is very precise about what needs to
be similar and what can be different between model and target and can make precise
predictions about P 0.

Dimensional analysis is restricted to some domains of physical engineering and
cannot be used for the virtual and social systems that we work with in software
engineering or information systems engineering.

The architectural approach to developing a theory of similitude is common
in drug research and aeronautical engineering, as illustrated by examples given
by Willner [20] and Vincenti [19]. I am not aware of examples from software
engineering and information systems engineering.

The extreme case approach makes a claim about what happens if you move from
an extreme to less extreme cases along some dimension. This claim is a theory of
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similitude too. It needs to be supported by evidence that shows that the expected
effect is not interfered with by other mechanisms that may happen in practice.

The empirical approach, finally, builds a statistical, descriptive theory of simil-
itude in the form of a statistical model that relates student performance with the
performance of professionals. For example, the papers mentioned in the example
above test whether a property observed in students also occurs in professionals.

15.6 Summary

• Analogic inference is generalizing an explanation to cases or populations not yet
investigated but that are similar to the ones already investigated.

• Architecture-based analogies give more support to analogic generalizations than
feature-based analogies do, so we only consider architectural analogies:

– The reasoning in architectural analogy is that if the target of the generalization
has a similar architecture, then similar mechanisms will produce similar
phenomena, other things being equal.

• Analogic generalization gains support by analytical induction, in which the
theory is tested on a series of similar and dissimilar cases or populations.

• Generalization from a validation model to a real-world target can be supported
by stronger means, namely, by a theory of similitude. This theory can itself gain
support from architectural similarity or extreme case reasoning and in a few
physical engineering branches by dimensional analysis. Theories of similitude
can be tested empirically.

Notes

1Page 203, analytical induction. Analytical induction was introduced in sociology by the
Polish sociologist Znaniecki, who attributes it to Plato and Galileo [22, p. 237]. Yin [21, p. 32]
mentions analytical induction in his book on case study methodology but calls it “analytic
generalization” and does not really explain it. The best description of analytical induction is given
by Robinson [12]. Less well known but very informative too is the review by Tacq [18].

2Page 205, external validity. Shadish et al. [15, p. 507] define external validity as the validity
of, i.e., the degree of support for, claims that a causal relationship holds for variations in research
setups, called units, treatments, outcomes and settings (UTOS). The term UTOS was taken from
Cronbach [2]. In this book, a research setup consists of an artifact U interacting with a context S,
of which the outcomes O are measured, and that possibly receives a treatment T. So our research
setup has the UTOS structure. External validity is then the degree of support for the claim that a
causal, architectural, or rational explanation is valid for similar research setups.

3Page 205, threats to external validity. This list does not resemble the standard one from
Shadish et al. [15], but it is in fact very similar. Shadish et al. mention the following threats:

• Variation of causal relationship over units. An effect found for some population elements may
not hold for other population elements:



www.manaraa.com

210 15 Analogic Inference Design

– Table 15.1 requires the OoS to be similar to the other population elements. So if we
are able to explain a causal relationship architecturally and the population elements are
architecturally similar, then it is plausible that the effect will occur in other population
elements too. Failure to meet these requirements is a threat to external validity.

• Variation of the causal relationship with variation over treatments:

– We require in Table 15.1 that experimental treatments are similar to treatments in the
population.

• Variation of the causal relationship with variations in outcome measures. For example, a new
technique may improve the reliability of a program but may make it slower to execute:

– This does not correspond to a requirement in Table 15.1. Generalizing from one outcome
variable to another outcome variable would be an example of feature-based similarity, which
is a weak basis of analogic reasoning that is not supported here.

• Variation of the causal relationship with settings:

– This is part of the requirements in Table 15.1, but indirectly. In our approach, the object
of study consists of the artifact and its context. So this threat is already captured by our
requirements on the object of study.

• Context-dependent mediation. In the words of Shadish et al. [15, p. 87], “an explanatory
mediator of a causal relationship in one context may not mediate in another context”:

– In the terminology of this book, the mechanism that produced a causal effect in one case
may not do so in another. This was mentioned as a threat to internal validity in Chap. 14.
There, one threat to the validity of an architectural explanation was that the architecture
could be the wrong abstraction of a case, and another threat was that in a real-world case,
several mechanisms could interfere to give an unexpected result. These are also threats to
external validity. An explanation may succeed in one case and fail in another.
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Chapter 16
A Road Map of Research Methods

16.1 The Road Map

The road map of this book was shown in outline in the Preface and is here shown
with more detail in Fig. 16.1 (Research Goals and Research Questions). As stated in
the Introduction, design science research iterates over solving design problems and
answering knowledge questions. Design problems that need novel treatments are
dealt with rationally by the design cycle, which has been treated in Part II. Knowl-
edge questions that require empirical research to answer are dealt with rationally
by the empirical cycle, which has been treated in Part IV. Design and empirical
research both require theoretical knowledge in the form of conceptual frameworks
and theoretical generalizations, which enhance our capability to describe, explain,
and predict phenomena and to design artifacts that produce these phenomena.
Theoretical frameworks have been treated in Part III.

The outcome of the design cycle is a validated artifact design, not an implemen-
tation in the intended social context of use. Implementation in the social context of
use is transfer of technology to a stakeholder context of which the original designers
of the technology are not part. Technology transfer is not part of design science
research but may be a sequel to it. Even technical action research (TAR), in which
the newly designed artifact is tested by using it to treat real-world problems, is not
technology transfer. Technology transfer is adoption of the artifact by stakeholders
without involvement of the design science researcher.

The empirical cycle goes beyond research design by executing the design and
analyzing the results. The results are then used to answer the knowledge questions
that triggered the empirical cycle.

The different tasks in the empirical cycle have been discussed at length in Part IV,
and Appendix B summarizes the cycle in the form of a checklist.

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__16
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Research problem

Design problem

Improve a problem context
By (re)designing an ar�fact
That sa�sfies some requirements
In order to help stakeholders to achieve 
some goals

Knowledge ques�on

─ Descrip�ve ques�ons:
What, when, where, who, how many, 
how o�en,  etc.

─ Explanatory ques�ons:
Why? Causes, mechanisms, reasons.

─ Conceptual frameworks
Architectural structures
Sta�s�cal structures

─ Theore�cal generaliza�ons
Natural and social 
science theories
Design theories

─ Problem analysis
Conceptual framework?
Knowledge ques�ons?
Popula�on?

─ Research setup design
Objects of study?
Treatment?
Measurement?

─ Inference design
Descrip�ve inferences?
Sta�s�cal inferences? (sta�s�cal models)
Abduc�ve  inferences? (causal or 
architectural explana�ons)
Analogic inferences? (generaliza�ons)

─ Valida�on of inferences against research setup

─ Problem inves�ga�on
Stakeholders?
Goals?
Conceptual framework?
Phenomena
Theory of the phenomena?  
(sta�s�cal, causal, architectural)
Contribu�on to goals?

─ Treatment design
Requirements!
Contribu�on to goals?
Available treatments?
New treatment design!

─ Treatment valida�on
Effects?
Requirements s�sfac�on?
Trade-offs?
Sensi�vity?

Part I: Framework for design science

Part III: Theories

.IItraP

Theories improve our 
capability to describe, 

explain, predict, design 

Ar�fact design

─ Research execu�on

─ Data analysis
Descrip�ons?
Sta�s�cal conclusions?
Explana�ons? (causal, architectural)
Generaliza�ons by analogy?
Answers to knowledge ques�ons?

Research design

Empirical cycleDesign cycle Part IV:Part II:

Fig. 16.1 Summary of the design science approach of this book
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16.2 Four Empirical Research Methods

In this final part of the book, we show how the checklist can be used to construct
four different research methods:

• In observational case studies, the researcher studies individual cases to investi-
gate how phenomena in the case are produced by the architecture of the case.
The researcher performs no intervention. Observational case studies are done
in the field, or at least they are based on information produced in the field.
Observational case studies are useful for doing implementation evaluations and
problem investigations. They cannot be used to validate new technology because
in validation research, by definition, validation models rather than real-world
implementations are studied.

• In single-case mechanism experiments, the researcher studies individual cases,
just as in observational cases studies, to investigate how phenomena in the case
are produced by the architecture of the case. But in single-case mechanism
experiments, the researcher intervenes, i.e., experiments, with the case. Single-
case mechanism experiments are often done in the laboratory, for example, to
test an artifact prototype or to simulate real-world phenomena, but they can also
be done in the field, for example, to investigate a real-world implementation.
Single-case mechanism experiments are useful for validating new technology,
for evaluating implementations, and for investigating problems in the field.

• In TAR, the researcher experiments with single cases, just as in single-case
mechanism experiments. But in contrast to single-case mechanism experiments,
this is not only done to answer a knowledge question, but also to help a client.
This is useful when validating new technology under real-world conditions. TAR
is always done in the field.

• In statistical difference-making experiments, the researcher gives two samples of
population elements different treatments in order to find out if the difference in
treatments causes a difference, on the average, in this population. This can be
done in the laboratory or in the field. Statistical difference-making experiments
are useful to evaluate implementations in the field, to learn more about problems
in the field, and to validate new technology on a large scale in the lab or in the
field.

There are additional research methods, not discussed in the chapters that follow.
For example, survey research is useful for implementation evaluation and problem
research but is not discussed here. Expert opinion is an effective way to validate new
artifact designs at an early stage but is not discussed here. Other important research
methods not treated here are systematic literature surveys and meta-analysis.

The four methods discussed here have many variants too. Observational case
studies can be done for cases with a simple or complex nested structure, and it
can be done for one or more cases in series. Single-case mechanism experiments
can be done with software prototypes, role-play with students, simulations of
real-world phenomena, etc. TAR can be done with various levels of involvement
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of the researcher. Statistical difference-making experiments have many variants,
depending on the number of treatments and samples and on the sampling methods.
In the chapters to come, we discuss only a few illustrative examples and show how
these examples can be reconstructed using the checklist for empirical research. This
should provide enough inspiration for you to construct your own research method
based on the checklist.

16.3 One Checklist

The checklist is a list of possible choices but does not prescribe how these choices
are to be made. The start of the checklist contains questions to position yourself in
the goal structure of design science projects that we discussed earlier in Chap. 2. The
checklist then goes to ask what the research problem is, how it is to be investigated,
how valid this design is for this problem, etc.

To keep in touch with the top-level structure of your research, it is important
to ask yourself early on how your research is positioned along the following four
dimensions. These dimensions correspond to major choices in the checklist and can
be viewed as a high-level version of the checklist. Two of the dimensions are shown
in Fig. 16.2:

• What is studied. Do you want to study single cases in-depth, or do you want
to study statistics of samples? In other words, do you want to know by what
mechanisms single phenomena were produced, or do you want to know what the
average value of a variable in a sample is, to compare it with other averages? To
answer this question, you should be aware of what the population of interest is
and what its elements are.

Single cases

Samples

Where is it 
studied

What is studied

Lab Field

Technical ac�on 
research

Single-case mechanism experiments

Sta�s�cal difference-making experiments

Observa�onal case 
studies

Fig. 16.2 Two dimensions along which to classify research methods
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If you are studying a single element at a time, then you are studying single cases.
Typically, you want to know how phenomena in the case are produced, and you
will generalize by analogy to similar cases, which are the other elements of the
population. Case-based research allows you to focus on systematic similarities
among population elements. Explanations of phenomena should be architectural.
If you are studying sets of elements at a time, then you are studying samples.
Typically, you want to know what sample statistics tell you about distribution
parameters such as the population average of the variable. Sample-based research
allows you to average out nondeterministic differences among population ele-
ments. Explanations of phenomena can be causal.

• Where it is studied. Whatever you are studying, you may want to study it in
the laboratory or in the field. If the phenomenon of interest cannot be produced
in the laboratory, you are restricted to do field studies. This is expensive. The
population elements that you study may be heterogeneous, and it may be hard to
control the factors that influence these elements.
If the phenomenon of interest can be produced in the laboratory, then you have
to specify how to do this and how to control the factors that may influence
the objects of study. Laboratory studies can be generalized to other laboratory
studies. But if your goal is to learn something about phenomena in the real world,
then you also have to think about the (dis)similarity of the laboratory setup with
real-world setups.

• How it is studied. A third dimension, not shown in Fig. 16.2, is whether or not to
intervene in the objects of study. In observational studies, you do not intervene; in
experimental studies, you do intervene. Observational case studies, surveys, and
focus groups to collect expert opinion are observational studies. Observational
studies can support architectural explanations, but to provide support for causal
explanations, experimental interventions are needed.

• Why it is studied. Your choices made along the above dimensions are motivated
by your research goals. Do you want to investigate a real-world problem or
evaluate an implementation in the real world? Then you should do field research.
Do you want to test a prototype of a newly designed artifact? Then case-based or
sample-based experimental research in the lab or field should be done.

Additional considerations in choosing a research design include the available
resources and possible risks. Your available resources will constrain what you can
do. How much time do you have for the research? What resources would you need
for a particular research design, and what is the cost of these resources?

Resources of other stakeholders will play a role too. How much time do they
have to wait for your results? How much time would subjects have to participate in
the research? Can they afford to spend this time?

Risks must be assessed too. Can stakeholders in the research, such as sponsors or
you, afford the risk of failed research? For example, can they, or you, afford to run
the risk of doing an experiment that has inconclusive results? And is there a risk of
harming people’s interests in the research?
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Design problem:
Improve effort estimation of process-aware information systems (PAIS) in company X!

(1) Problem 
investigation:
What are the current 
problem with effort 
estimation of PAIS in X?

(4) Available 
treatments?
What are the current 
approaches to effort 
estimation of PAIS?

(8) Requirements 
satisfaction?

(9) Design a new 
treatment!

Use causal loop 
models

(11) Validation
Effects?
Requirements satis-
faction?

(2) Knowledge 
questions:
Stakeholders, goals, 
problematic phenomena, 
contribution?

(3) Research methods:
Survey of projects,
Observational case 
studies of projects

(5) Design a taxonomy!

(7) Research method:
Literature survey, using 
taxonomy

(6) Design cycle
Goals for taxonomy?
Specify require-
ments for taxonomy!
Available taxono-
mies?
Their contribution to 
goals?
Design a new one!
Requirements satis-
faction?

(10) Prototype design and implementation
Build/acquire tool support
Build causal loop models based on interviews 
Extract modelling guidelines

(12) Research methods:
Model validation using student projects
Technical action research (pilot project)

Fig. 16.3 Methodological structure of a PhD thesis. The hollow arrows are problem decompositions,
the single arrows roughly indicate temporal sequence of problem-solving, and the numbers indicate the
sequence in which tasks were performed

The following examples illustrate how in different stages of the design cycle
different empirical research methods have been selected:

� Mutschler’s [2] research goal was to improve effort estimation techniques for process-aware
information systems (PAIS). A PAIS is a software system that manages and executes operational
business processes. Examples are workflow management systems, case management systems,
and enterprise information systems. Figure 16.3 shows the structure of the research project.
The boxes represent tasks, double arrows indicate task decompositions, and numbers indicate
the sequence in which tasks were performed. The boxes at the left-hand side of the figure are
connected by single arrows to indicate that they correspond roughly to the tasks in the design
cycle and have been executed from top to bottom.
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One of the stakeholders was the large multinational manufacturing company who sponsored
Mutschler’s research. The problem that triggered the research project was that effort estimations
for PAIS development projects were often over budget, which means their effort estimations
were inaccurate. To investigate this problem, Mutschler performed two observational field studies,
namely, a web-based survey among project managers and some observational case studies of
individual projects. They were studied in the field, because the relevant phenomena could not be
produced in the laboratory. They were studied observationally, because experimental interventions
in the projects would probably destroy the relevant phenomena. The web-based survey is sample
based and gives an impression of the extent of the problem. The case studies are case based and
give information about the possible reasons and mechanisms why effort estimations are inaccurate.
Part of the treatment design task is to make a survey of available effort estimation methods, and for
this, Mutschler performed a literature survey. There turned out to be several conflicting taxonomies
of effort estimation methods, and before conducting the survey, he constructed a taxonomy based
on available taxonomies and his own research goals.
The effort estimation technique designed by Mutschler is based on causal loop models that
represent various factors that influence project effort. Altogether, Mutschler made about 20 of these
models for different stages of a PAIS development project, based on information collected from
project managers.
To validate the models, he performed an experiment in the laboratory with students. Different
student projects developed two PAIS each, and the causal loop models were validated by using
them to predict the effort that student projects would spend to develop these systems and
comparing this with the actual effort spent. This validation was done with students to reduce the risk
of burdening project managers in the field with a possibly inaccurate effort estimation technique.
The second validation was done by a real-world project, whose project manager used the causal
loop models to estimate project effort. This is an example of TAR. After the project was finished,
the estimations were compared with actual effort.

� Gorschek et al. [1] described a design science research project in which researchers worked with
practitioners to identify relevant problems experienced by the practitioners and to select one to
solve. Their research process follows the design cycle, followed by the first step of implementation,
as shown in Table 16.3. In the following, we use the numbering of steps by Gorschek et al.

(1) Problem investigation was done by observational case studies. One of the problems identified
was how to deal with the large volume of requirements, originating from different sources, in
market-driven product development, and this problem was selected for treatment.

(2) Selecting a problem for treatment was done jointly with the industrial stakeholders. This is part
of research management, and so it is not included in the engineering cycle.

(3) Treatment design consisted of a literature survey of the state of the art of requirements
engineering, followed by the specification of a candidate solution.

(4) Validation was done in three iterations. First, the requirements engineering method was used
by students in the laboratory. The results motivated an improvement of the method.

(5) Second, software engineers were asked to express their opinion about the method in focus
groups. This is not only a validation but also a part of research management to gain support
from important stakeholders. To gain further support, the method was also presented to
decision-makers, again for validation as well as for gaining support. These expert opinions
led to further improvements of the method, in particular by simplifying it to improve its usability
in practice.

(6) Management gave the go-ahead for the project, and the third validation task was to use the
method in two pilot projects. This is an example of two TAR projects. Lessons learned from
these projects was used to further improve and finalize the method.

(7) The final task was to hand over the method to practitioners. This was the start of an
implementation process, which is not part of the research project.
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Table 16.1 Technology transfer process described by Gorschek et al. [1]

Engineering cycle
Technology transfer model of Gorschek et
al. [1]

Problem investigation

� Observational case study

1. Identify potential improvement areas based
on industry needs

� Observations
� Process assessment

2. Formulate research agenda

� Identify problems to be treated
� Formulate problem

Treatment design 3. Formulate candidate solution

� Survey state of the art
� Formulate candidate solution

Validation

� Laboratory experiment

4. Laboratory validation

� E.g. by laboratory experiment

� Expert opinion

5. Static validation

� By expert opinion

� Technical action research

6. Dynamic validation

� By pilot projects

Implementation 7. Release the solution

Both examples illustrate some frequently made choices in design science research.
Problem investigation is often done by observational case studies and surveys. Often
the problems cannot be reproduced in the laboratory, and so they must be studied in
the field. There is usually no need or no possibility to do experiments to understand
the problem, and so the problems are investigated using observational field research.
Statistical knowledge about the extent of the problem is obtained by doing a survey;
architectural knowledge is obtained by doing observational case studies. A literature
study helps to collect what is already known about the problem.

Treatment design always involves making a survey of the state of the art, and this
is done by a literature study too.

Treatment validation consists usually of an iteration of validation studies, where
early on, laboratory research is done to reduce the cost of research and reduce the
risk of harming stakeholders with ineffective treatments. As a preparation for field
tests, expert opinion is a cheap and effective method. Prior to releasing a treatment
design for implementation in the real world, TAR is used to increase confidence in
the validity of the treatment. We recognize here the process of scaling up from the
lab to the real world, described in Chap. 7 (Treatment Validation).
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Chapter 17
Observational Case Studies

An observational case study is a study of a real-world case without performing
an intervention. Measurement may influence the measured phenomena, but as in all
forms of research, the researcher tries to restrict this to a minimum.

The researcher may study a sample of two or even more cases, but the goal of
case study research is not to acquire knowledge about samples, but about individual
cases. Generalization from case studies is analytical induction over cases, not
statistical inference from samples.

Observational case studies are needed to study phenomena that cannot be
produced in the laboratory. Because you do not intervene, observational case
studies are a useful research method for implementation evaluation and problem
investigation, where you investigate the real world as you find it.

There are several checklists and handbooks for doing case study research in
information systems and software engineering research. The checklist of this book
includes the others but gives more attention to architectural explanations of case
studies and to the possibility of generalization by architectural analogy.1

The description of the context, research problem, and design of your case study
should be documented in a case study protocol. Events during research execution
and details of data analysis can be collected later in a separate document, sometimes
called a case study log or diary. The full protocol and diary will be your source
for reports in conference and journal papers, and you may consider making them
available to other researchers if confidentiality restrictions allow this. The rest of
this chapter shows how the checklist of Appendix B is applied to the design and
analysis of observational case studies.

© Springer-Verlag Berlin Heidelberg 2014
R.J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, DOI 10.1007/978-3-662-43839-8__17
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Table 17.1 The checklist for the research context of observational case study research, written from
the point of view of the researcher preparing to do the research

1. Knowledge goal(s)

– What do you want to know? Is this part of an implementation evaluation, a problem
investigation, a survey of existing treatments, or a new technology validation?

2. Improvement goal(s)?

– If there is a higher-level engineering cycle, what is the goal of that cycle?
– If this is a curiosity-driven project, are there credible application scenarios for the

project results?

3. Current knowledge

– State of the knowledge in published scientific, technical and professional literature?
– Available expert knowledge?
– Why is your research needed? Do you want to add anything, e.g. confirm or falsify

something?
– Theoretical framework that you will use?

17.1 Context

Table 17.1 gives the checklist to position your research in context, written from
the point of view of the researcher preparing to do the research. An observational
case study has a knowledge goal and may or may not have an improvement goal. If
it has an improvement goal, it is part of an implementation evaluation or problem
investigation of a higher-level engineering cycle. Otherwise, it is a curiosity-driven
study that aims to increase our knowledge about some topic. Finally, the checklist
asks about current knowledge about this topic.

In a report, you typically provide this information in an introduction that
summarizes your research goals and explains why it needs to be done. If there is
a lot of related work to discuss, then this could be a separate section, to support your
claim that this case study needs to be done.

In the following two examples, I extracted the answers to the checklist questions
from two research reports. The example of Warne and Hart [11] is new and
the example of Damian and Chisan [1] has been used in Chap. 14 (Abductive
Inference Design) to illustrate architectural explanation. Here we analyze these
papers in full:

� (1) Warne and Hart [11] report on an observational case study of the impact of organizational
politics on information system project failure. Their knowledge goal was to contribute to
knowledge about the relation between politics and project failure.

(2) This knowledge may be useful, for example, to assess the possible impact of politics on project
failure in future projects. But there was no improvement goal in the sense of a goal to develop
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an artifact that would treat this problem. Also, no artifact implementation was being evaluated,
so I would classify this study as a curiosity-driven problem investigation.

(3) A brief review of related work reveals that causes of failure are rarely technical and more usually
organizational [11, p. 191]. The authors aimed to contribute to the knowledge about the impact
of political factors on project success.

� (1) Damian and Chisan [1] report on an observational case study of the introduction of require-
ments engineering in a software development organization. This was an implementation
evaluation, in which the artifact consisted of a number of requirements engineering methods
and techniques and the context was a software development organization. The knowledge goal
was to find out what the effects are of introducing requirements engineering practices in a
development organization and to understand why they occur.

(2) There was no stated improvement goal in the sense that a follow-up project was planned
to improve requirements engineering practice further, in this company or elsewhere. But the
knowledge and understanding acquired in this project were expected to be useful both for
practitioners who are interested in improving their requirements engineering practices and for
researchers interested in understanding the effects of requirements engineering in practice.

(3) A review of related work reveals that requirements engineering improvement is tightly bound up
with other systems engineering processes and that the impacted variables discussed most often
in the literature are developer productivity, software quality, and risk mitigation. The review also
revealed that there is little knowledge of the benefits of requirements engineering in concrete
cases.

17.2 Research Problem

Table 17.2 gives the checklist for the problem statement. In order to specify your
knowledge questions and population of interest, you need to define a conceptual
framework. For case studies, this should define the architectural structures that you
are looking for in a case.

Operationalization of constructs may be done at any point before defining the
measurement procedures. Whenever it is done, the resulting definitions are part of
the conceptual research framework, so the checklist item is listed here. If you define
indicators for constructs, then you should check for mono-operation and mono-
method bias, at least before you define your measurement procedures.

Knowledge questions help you to prevent drowning in the potentially infinite
mass of data that you could collect about a case. The questions can be exploratory or
can be focused on testing some hypotheses. Some authors distinguish intermediary
kinds of questions, about which you have expectations that are not yet formulated in
measurable hypotheses to test. These expectations are expressed as the propositions.
Just as the knowledge questions themselves, these propositions are intended to focus
your attention to relevant case phenomena.

Whether open, closed, or intermediary, case study knowledge questions should
not only be descriptive but also explanatory. Case studies are performed in order to
gain understanding, not only facts.
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Table 17.2 The checklist for the research problem, written from the point of view of the researcher
preparing to do the research

4. Conceptual framework

– Conceptual structures? Architectural structures, statistical structures?
– Chance models of random variables: Semantics of variables?
– Validity of the conceptual framework? Clarity of definitions, unambiguous applica-

tion, avoidance of mono-operation and mono-method bias?

5. Knowledge questions

– Open (exploratory) or closed (hypothesis-testing) questions?
– Effect, satisfaction, trade-off or sensitivity questions?
– Descriptive or explanatory questions?

6. Population

– Population predicate? What is the architecture of the elements of the population?
In which ways are all population elements similar to each other, and dissimilar to
other elements?

– Chance models of random variables: Assumptions about distributions of variables?

A similar remark can be made about generalization from a case study. You select
a case study because it is an element of a population of interest. A report of facts
about a case with no potential for generalization could be relevant as a piece of
journalism, but it would not be relevant as research:

� For example, you select an information system implementation project because it is, precisely, an
information system implementation project. So you are interested in the population of information
system implementation projects. If the case would not contain facts relevant for other cases, then
there is no reason why another researcher should read your case study report.

As pointed out before, at the start of commencing a series of case studies, the
population predicate may not be defined very clearly. This does not mean that
there is no target of generalization. It only means that the required similarity across
targets of generalization is not so clear yet. Because the similarity predicate and
relevant theories may be revised between case studies, it would be misleading to
call these case studies replications of each other. Rather, the series of case studies is
an example of analytical induction. It is the purpose of analytical induction over a
series of cases to test and improve an architectural theory and get more clarity about
the population predicate:

� (4) Warne and Hart [11] use the concepts of information system, business-IT alignment, system
development project, etc. in the way common to the information systems literature and known to
the readers, so they are not defined. Failure is defined explicitly, as abandonment of the project.
They also define the concept of an information ward, as the set of data and processes “owned”
by an organizational actor (i.e., a manager), in the perception of that actor. A political information
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ward is the subset of an information ward that its owner will defend if ownership is threatened.
(6) The population of interest seems to be:

all large information system development projects for which the major success
factors have been satisfied: Alignment with business needs, top management
support, user involvement, effective project management, use of a system
development methodology.

These conditions have been collected in a literature study [11, p. 193]. The success factors refer
to a case architecture that has as components the business, project, top management, users, and
project management. The case study report describes some of the interactions between these
components in the case.
(5) The authors do not state their knowledge questions explicitly, but the introduction states the top-
level knowledge question as “What are the causes for project failure?” That is a question about the
case with only local interest. Given the population of interest, a possible corresponding population-
level knowledge question is:

– What are the mechanisms that can lead to failure of large information system development
projects of which the major conditions of success are satisfied?

This question is about the population, as it should be, not about the case. It has a middle-range
scope, as it asks for mechanisms that can lead to failure. Also, the requested explanation is now
architectural, as I think is appropriate for case studies, rather than causal.

� (5) The knowledge question stated by Damian and Chisan [1, p. 435] is:

– How do improvements in requirements engineering processes relate to improvements in
productivity, quality, and risk management?

This is a population-level question. There is no explicit mention of causal, architectural, or
motivational explanations, but we will see later that both causal and architectural explanations
have been found.
(4) The relevant concepts of developer productivity, software quality, and risk mitigation have
already been defined by the authors when discussing related work.
(6) The population is not explicitly stated but can be taken to be:

all software development organizations that introduce requirements engineer-
ing processes [1, p. 437].

The case of interest has an architecture consisting of a development organization, users, and a
marketing organization. Requirements come from the marketing organization, and help requests
come from the users. The case organization actually selected was expanding its capability from
CMM level 1 to CMM level 2. Whether or not this expansion of capabilities is essential for the
generalizations to be made is not known and must be investigated by additional case studies.

In Chap. 8 (Conceptual Frameworks), we have seen that within a case study
you can do a statistical study, for example, by doing a statistical survey of the
population of software engineers in a company. In that case, you will need to define a
statistical structure too, listing the variables of interest to be studied statistically, and
a chance model that defines their meaning, assumptions, measurement procedures,
and the sampling procedure. If you are planning to do a statistical study inside a
case study, it is best to consider that as a local research project for which you use
the checklist afresh. Using the checklist for that local study, you will again define
what the research problem of that project is, specify a research design, etc.
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17.3 Research Design and Validation

In observational case study research, we study cases as we find them in the real
world, but the study itself must be designed. This requires decisions about case
selection, sampling, and measurement. It also requires alignment of these decisions
with the planned inferences from the data. The checklists for inference design are
given in Sect. 17.4, but we illustrate their application to research design here.

17.3.1 Case Selection

Table 17.3.1 gives the checklist for selecting a case. Cases are selected, not
constructed, and they are selected according to some population predicate that
specifies architectural properties of the cases in the population of interest. If we
want to give descriptive statistics of a case, then we should ensure that the chance
model of the variables about which we want to give statistics is defined. The chance
model tells us what the meaning of the variables is in terms of case phenomena.

In case study research, the population predicate may not be very clear, and the
goal of research may precisely be to gain more clarity about it. This makes it all the
more important to think in advance of how you will know that a case that you found
has the architecture specified by the population predicate.

We need this because during case selection we should consider how much
support a case could give to abductive and analogic inferences. A study of a
unique unrepeatable case cannot support causal inference, because one case can
only show one of the two measurements needed to show a difference. Only if

Table 17.3 The part of the checklist for the acquisition of an object of study that is relevant for case
selection, written from the point of view of the researcher preparing to do the research

7.1 Acquisition of Objects of Study (cases)

– How do you know that a selected entity is a case? How do you know it satisfies the
population predicate?

– Validity of OoS

- Inference support. Which inferences would be valid with respect to this
design? See checklists for validity of descriptive statistics, abductive and
analogic inferences.

- Repeatability. Could other researchers use your report to construct or select
a similar OoS?

- Ethics. Are people informed that they will be studied, and do they consent to
this? Are they free to stop at any time without giving reasons, and do they
know this?
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different cases would behave identically, or if behavior is time independent, can we
do comparative-cases or single-case causal experiments, as described in Chap. 14
(Abductive Inference Design). Real-world observational cases do not satisfy these
very strict assumptions. However, case studies can support architectural and rational
inferences. For architectural inference, the following considerations are relevant
(Table 17.4):

• Analysis. Can enough information about the case architecture be acquired to be
able to analyze relevant case mechanisms? Can information about capabilities
and interactions of case components be acquired to be able to explain how the
phenomena of interest are produced? Think of information that you can acquire
about people, roles, organizational units, projects, systems, etc.

• Variation. The world is full of variation, and most real-world cases match the
population predicate somewhat but not completely. An architectural component
specified in the population predicate may be absent from the case actually
acquired. Or it may be present but with somewhat different capabilities from
those assumed by the architectural model of the population predicate. You have
to assess whether all components and capabilities assumed by the model are
essential for the explanations that you can foresee. The ability to do such an
assessment depends on your prior knowledge, and if this knowledge is absent, it
may be your research goal to find this out in a series of case studies:

� In a follow-up case study to confirm the findings of Damian and Chisan, we may find that there
is a team similar to the cross-functional team but that it does not contain a representative from
product management and does not keep a record of design rationale. Is this essential? Or can
we still expect similar phenomena produced by similar mechanisms? The best way to find out
is to do the case study.

• Abstraction. The case architecture as specified in the population predicate
abstracts away components and mechanisms that may be present in real-world
cases. What would happen if the architecture specified in the population predicate
does not match the components of the case actually acquired? What is the impact
of components present in the case but absent from the architecture specified in
the population predicate? It is an important goal of case studies to find out how
robust a mechanism is under the impact of other mechanisms with which it may
coexist in practice:

� For example, suppose we are studying coordination in outsourcing projects. Suppose you
are considering to select a case in which you know that outsourcing is coordinated by an
independent external consultant. If your population predicate does not specify this additional
case component, you have to consider whether this case is relevant for your research goal or
not. If you want to confirm findings from previous case studies, you may not want to select this
case. But if you want to falsify findings from previous case studies in a process of analytical
induction, you may on the contrary want to select this case.
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To support rational inference, the following considerations are relevant already
when selecting a case (Table 17.4):

• Goals. To which extent you can get information about the true goals of actors in
the case?

• Motivation. Even if you know what the true goals of the actors are, it may be hard
to discover their motivations. Can you get information about the true motivations
of actions observed in a case?

To assess support of a case for analogic inference, the following questions are
relevant (Table 17.4):

• Population predicate. Does the case satisfy the population predicate? In which
way is it similar to the other cases in the population? In which way is it
dissimilar?

• Ambiguity. Does the case satisfy other population predicates too? What could be
the target of analogic generalization?

The answers to these questions tell us what the potential targets of analogic
generalization can be:

� Suppose again that you are interested in outsourcing projects. The population predicate then
specifies a required case architecture: an outsourcing client interacting with an outsourcing
vendor. During acquisition of a case, you may have to ask if a candidate case has the required
characteristics to count as an outsourcing case with this architecture. Does a virtual organization
of a small client company and an individual programmer count as an outsourcing case? Does the
size and location of the participants matter?
All of these aspects of a case have been abstracted away in the population predicate. They are
not only important for architectural inference but also for analogic inference. In the end, it will be
the architectural explanation of observed phenomena that will determine to which population(s) we
can generalize by analogy.

In addition to support for inferences, the two other requirements for validity of
case selection are repeatability and ethics. Case selection should be repeatable in
the sense that other researchers could use the population predicate to select similar
cases. If similar case studies done by other researchers confirm your findings, then
you can consider those case studies to be replications. If they falsify your findings,
then it is better to see those studies as a continuation of your analytical induction
process.

The checklist also tells us that you need to prepare information for the case
participants so that they can express informed consent and know that they are free
to stop their participation at any time.

The rationale for case selection and the case architecture must be included in any
published report, because they help the reader to understand the explanations that
can be given and the generalizations that can be made from the case data. Here is
the information that I extracted from the two example case study reports:

� (7.1) Warne and Hart [11] do not describe their selection criteria, but their report implies that they
were looking for a large failed information system development project that satisfied the major
success factors: alignment with business needs, top management support, user involvement,
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effective project management, and the use of a system development methodology. This is the
population predicate that we identified earlier in this chapter (p. 229). They had access to
information about the case architecture and the goals and motivations of actors, which allowed
them later on to explain phenomena architecturally and indicate a corresponding target of analogic
generalization.

� (7.1) Damian and Chisan [1] do not describe their selection criteria, but their report implies that
they were looking for an organization that introduced an explicit requirements engineering process.
This is their population predicate. One of the researchers (Chisan) worked at the organization
for a year and had access to sufficient information about the case architecture and goals and
motivations of the actors to be able to give architectural explanations of observed phenomena.
(The architectural explanations presented in Chap. 14 on abductive inference (p. 193) have been
constructed by me based on the published report.) This in turn governs the choice of the target of
analogic generalization: organizations with a similar structure.

17.3.2 Sampling

Table 17.3.2 lists the checklist for sampling in case study research. In case study
research, cases are sampled in series, where each case is analyzed separately, and a
case study may be finished, and the theoretical framework revised, before the next
case is started. This is analytical induction.

Scanning the checklist for the validity of abductive inference (Table 17.4), we
find the following validity considerations:

• Sampling influence. Could the selection mechanism influence the selected cases?
Could there be a regression effect?

Being selected for a case study may affect the case organization so that the
researcher may observe phenomena that would not occur when the organization
would not be studied. And if you study an extreme case, such as a very large project,
you must consider in your generalization that most other cases will be less extreme

Table 17.4 The part of the checklist for sampling objects of study in case study research, written from
the point of view of the researcher preparing to do the research

7.2 Construction of a sample

– What is the analytical induction strategy? Confirming cases, disconfirming cases,
extreme cases?

– Validity of sampling procedure

- Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of statistical,
abductive and analogic inferences.

- Repeatability. Can the sampling procedure be replicated by other
researchers?

- Ethics. No new issues.
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in size. This feature is used in extreme-case reasoning, explained earlier in Chap. 15
(Analogic Inference Design).

In the checklist for the validity of analogic inference (Table 17.4), we find the
following question about sampling for analogic inference:

• Representative sampling, case-based research. In what way will the selected
sample of cases be representative of the population?

Representativeness may be a matter of similarity, but more sophisticated represen-
tation relationships can arise if you have a theory of similitude that relates behavior
in a model to behavior in the target of a model.

17.3.3 Measurement Design

Table 17.5 lists the decisions you should make when designing your measurements
in an observational case study. First, you need a conceptual framework that defines
variables and their scales. You may have already have defined these from the start
in the conceptual framework, but often you need to spend additional attention to
reach the level of detail needed for doing a case study. In many case study reports,
measurement specification is described in a separate section.

Table 17.5 The part of the checklist for measurement that is relevant for case selection, written from
the point of view of the researcher preparing to do the research

9. Measurement design

– Variables and constructs to be measured? Scales, chance models.
– Data sources? People (e.g. software engineers, maintainers, users, project man-

agers, politically responsible persons, etc.), primary data (e.g. source code, log
files, bug tracking data, version management data, email logs), primary documents
(e.g., project reports, meeting minutes, organization charts, mission statements),
etc.

– Measurement instruments? Interview protocols, questionnaires, video recorders,
sound recorders, clocks, sensors, database queries, log analyzers, etc.

– What is the measurement schedule? Pretests, posttests? Cross-sectional or
longitudinal?

– How will measured data be stored and managed? Provenance, availability to other
researchers?

– Validity of measurement specification:

� Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of abductive
and analogic inferences.

� Repeatability. Is the measurement specification clear enough so that others
could repeat it?

� Ethics. Which company data must be kept confidential? How is privacy of
persons respected?
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The case architecture defined in the population predicate can now be used to
indicate what the data sources are, such as:

• People (e.g., software engineers, maintainers, users, project managers, politically
responsible persons, etc.)

• Primary data (e.g., source code, log files, bug tracking data, version management
data, email logs)

• Primary documents (e.g., project reports, meeting minutes, organization charts,
mission statements)

To do measurements, you must acquire or construct measurement instruments, such
as interview protocols, questionnaires, video recorders, sound recorders, clocks,
sensors, database queries, log analyzers, etc. This is an engineering problem in itself,
and you may have to test these instruments on real-world phenomena before you use
them in a case study.

The measurement schedule can only be finalized after you acquire a case, but in
order to negotiate with the case organization, you need to make a preliminary plan
first. Data management includes tools for collecting, storing, and managing data
and for maintaining provenance (traceability of data to its sources). You may want
to use tools for online surveys, for scanning and processing paper questionnaires,
etc. And you may want to use computer-aided qualitative data analysis software or
CAQDAS for short.

To assess validity of measurement procedures with respect to abductive infer-
ences from the data, we first need to consult the checklist for causal inference
(Table 17.4). Observational case studies cannot provide support for causal infer-
ences, but we should still ask what causal influence we may have on the case. We
should not end up studying case phenomena caused by ourselves. We should ask the
following question about measurement:

• Measurement influence. Will measurement influence the case?

Second, to facilitate generalization to other cases by analogic inference, the
following questions from the checklist of validity of analogic inference are relevant
(Table 17.4):

• Construct validity. Are the definitions of constructs to be measured valid? Clarity
of definitions, unambiguous application, and avoidance of mono-operation and
mono-method bias?

• Measurement instrument validity. Do the measurement instruments measure
what you claim that they measure? Interviewers may be biased, questionnaires
may be misleading, queries of databases with primary data may be incorrect, etc.
You should validate measurement instruments before you use them.

• Construct levels. Will the measured range of values be representative of the
population range of values? This is a classical threat to validity in statistical
research, but it is relevant for case studies too. For example, collecting data about
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only small successful projects in an organization may not give you knowledge
that can be generalized to projects of arbitrary size.

In addition to the support for inferences, measurements should be repeatable and
ethical. Using your measurement specification, other researchers should be able to
repeat the same kind of measurements in other organizations. And you will have to
establish rules for confidentiality of organizational data and for respecting privacy
of participants. These rules can only be finalized in your negotiations with the case
company, but you must prepare a preliminary set of rules first. Maybe your own
organization has templates for nondisclosure agreements, as well as a procedure
and forms for ethical aspects of research.

The case study protocol will contain all your decisions about measurement.
Published reports usually do not report the measurement procedures as designed
but describe the measurement procedures as realized. Here are the measurement
procedures reported by our two examples:

� (9) Important constructs in the study by Warne and Hart [11, p. 192] were alignment with business
need and top management support. From the report, it appears that these were operationalized
by asking case participants about their opinion about the extent to which these phenomena were
present. Since one case is studied, it may not be possible to investigate a representative range
of levels of these variables. But it is possible to collect data from a wide range of sources in the
organization so as to avoid getting a one-sided image of the case organization.
The data sources included all project developers, the managers responsible for the project,
and primary documents of the investigated project (e.g., steering committee minutes, project
management methodologies). Measurement instruments included interviews and questionnaires.
Presumably, these instruments were tested before used, but this is not reported in the paper [11].
The paper also does not report information about the measurement schedule or about data
management. Interviews and questionnaires always have some influence on subjects, which needs
to be minimized during the case study.

� (9) The relevant constructs in the study by Damian and Chisan [1] are developer productivity,
product quality, and project risk. The meaning of these concepts in related work is discussed. The
authors settle on a number of variables that may impact productivity, quality, and risk, such as
feature sizing, change management, specification conformance, etc. These concepts are taken
from the literature and are supplemented with measures used in the case organization itself [1,
pp. 447–448].
Data were collected in three rounds from several samples of software engineers, team leaders,
senior engineers, and managers by means of interviews and questionnaires [1, pp. 438, 440]. The
surveys can be considered statistical studies within a case and have their own research design and
interpretation. Data from these studies were made available on request to readers of the report.
In addition, primary documents were studied, such as change requests, project development
estimation data, and entries in the requirements management tool. Finally, one researcher was on-
site for 12 months and could participate in meetings. The variety of sources reduced the threat of
construct level confounding and may also have reduced influence on the subjects, as the presence
of the researcher was normal. Interviews and questionnaires, though, remain inherently disturbing
instruments.
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Table 17.6 Checklist for descriptive inference, written from the point of view of the researcher
designing a case study

10.1 Descriptive inference design

– How are words and images to be interpreted? (Content analysis, conversation
analysis, discourse analysis, analysis software, etc.)

– What descriptive summaries of data are planned? Illustrative data, graphical
summaries, descriptive statistics, etc.

– Validity of description design

� Support for data preparation.

- Will the prepared data represent the same phenomena as the
unprepared data?

- If data may be removed, would this be defensible beyond reason-
able doubt?

- Would your scientific opponents produce the same descriptions
from the data?

� Support for data interpretation.

- Will the interpretations that you produce be facts in your conceptual
research framework? Would your scientific peers produce the same
interpretations?

- Will the interpretations that you produce be facts in the conceptual
framework of the subjects? Would subjects accept them as facts?

� Support for descriptive statistics.

- Is the chance model of the variables of interest defined in terms of
the population elements?

� Repeatability: Will the analysis repeatable by others?
� Ethics: No new issues.

17.4 Inference Design and Validation

Case-based inference consists of three steps, namely, description, architectural
explanation, and generalization by analogy. We give the checklists here. Examples
of the validity considerations have already been given in the section on research
design. Examples of the inferences themselves are given later, in the section on data
analysis.

Table 17.4 gives the checklist for descriptive inference design and validity.
Descriptive inference from case data may require considerable time and effort,
because there is a lot of data to collect and manage, and interpretation may require
labor-intensive coding, replicated by more than one coder. You should be sure that
you have these resources before you start the case study. The validity requirements
of descriptive inference all ask in one way or another whether you will add
information to the data that is not warranted by the observed phenomena.
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Table 17.7 Checklist for abductive inference design in observational case studies, written from the
point of view of the researcher designing a case study

10.3 Abductive inference design

– What possible explanations can you foresee? What data do you need to give those
explanations? What theoretical framework?

– Internal validity

� Causal inference

- Sampling influence. Could the selection mechanism influence the selected
cases? Could there be a regression effect?

- Measurement influence. Will measurement influence the case?

� Architectural inference

- Analysis: The analysis of the architecture may not support its conclusions
with mathematical certainty. Components fully specified? Interactions fully
specified?

- Variation: Do the real-world case components match the architectural compo-
nents? Do they have the same capabilities? Are all architectural components
present in the real-world case?

- Abstraction: Does the architectural model used for explanation omit relevant
elements of real-world cases? Are the mechanisms in the architectural model
interfered with by other mechanisms, absent from the model but present in the
real world case?

� Rational inference

- Goals. An actor may not have the goals assumed by an explanation. Can you
get information about the true goals of actors?

- Motivation. A goal may not motivate an actor as much as assumed by an
explanation. Can you get information about the true motivations of actors?

Table 17.4 gives the checklist for abductive inference. You have to take care that
sampling and measurement do not influence case phenomena, as discussed above.
Explanations will be architectural and refer to components and mechanisms.

Table 17.4 shows the checklist for analogic inference. To generalize from a
case study, you need information about the case architecture and the mechanisms
that you have observed operating in a case. As all generalizations, support is
not total, there may be exceptions, and the generalization may be refined and
revised when more case studies are done. Generalization from a single case is
called analytical generalization, and generalization from a series of cases is called
analytical induction.
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Table 17.8 Checklist for analogic inference design in observational case studies, written from the point
of view of the researcher designing a case study

10.4 Analogic inference design

– What is the intended scope of your generalization?
– External validity

� Object of Study similarity.

- Population predicate. Does the case satisfy the population predi-
cate? In which way will is it similar to the population elements? In
which way will is it dissimilar?

- Ambiguity. Does the case satisfy other population predicates too?
What could be the target of analogic generalization?

� Representative sampling, case-based research: In what way will the
selected sample of cases be representative of the population?

� Treatment.

- Treatment similarity. Is the specified treatment in the experiment
similar to treatments in the population?

- Compliance. Is the treatment implemented as specified?
- Treatment control. What other factors than the treatment could influ-

ence the OoS’s? Could the implemented treatment be interpreted as
another treatment?

� Measurement.

- Construct validity. Are the definitions of constructs to be measured
valid? Clarity of definitions, unambiguous application, avoidance of
mono-operation and mono-method bias?

- Measurement instrument validity. Do the measurement instruments
measure what you claim that they measure?

- Construct levels. Will the measured range of values be representa-
tive of the population range of values?

17.5 Research Execution

We now switch perspective from a researcher designing a case study to that of a
researcher executing a case study and reporting about it. You have finished writing
the case study protocol and have started doing the study. You now start with the case
study diary in which you document what happened during execution and what you
did during analysis. The case study diary will be your basis for reporting to other
researchers. The diary will be much more detailed than an external report.

Table 17.5 lists the checklist for reporting about case study execution. The ques-
tions ask about the implementation of the different elements of your research design:
the case(s) actually selected, sampling (analytical induction), and measurement.
Case acquisition is a lengthy process in which you must build up trust with a case
organization. Trust comes by foot but leaves on horseback, and building up trust can
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Table 17.9 The part of the checklist for research execution that is relevant for case studies, written
from the point of view of the researcher preparing to write a report about the research

11. What has happened?

– What has happened during selection? Did the cases eventually selected have
the architecture that was planned during research design? Have there been any
unexpected events during the study?

– What has happened during analytical induction (i.e. sampling)? Could you study
the kinds of cases that you originally planned?

– What has happened during measurements? Data sources actually used, response
rates?

take months or even years. Beware also that trust comes and goes with people. If
your organizational contact leaves his or her job, you may be back at square one.

Related to the difficulty of getting access to a case, you may not be able to
get access to a case with exactly the architecture that you hoped for. You cannot
always get what you want. In your diary and external case study reports, you should
acknowledge mismatches between acquired case architecture and the architecture
specified in the population predicate. In your abductive and analogic inferences,
you should take this mismatch into account. In a process of analytical induction,
case variety may actually strengthen the generalizability of your results.

Measurements too may be subject to the vagaries of the real world. People may
cancel interview appointments, and respondents may misunderstand questionnaires
or return incomplete answers. Response rates may be low. Data sources promised
to be available may turn out to be out of reach. Primary documents may be hard to
understand without guidance, and the key stakeholders may be unreachable or have
left the organization. Data collected for practical use often has not had the quality
needed for scientific research and may have to be cleaned before you can use it.

All of this is important to note in the case diary, and the reader of your research
report should be informed of events that may influence the meaning of the data.
Here are our two running examples:

� (11) Warne and Hart [11] acquired a project in the public sector that failed after nine years. They
give a brief overview of organization, of the system developed, of the stakeholders involved, and
of important events during these nine years. After describing their measurement procedures, they
report on the sample of subjects to whom questionnaires were sent and about the response rates
obtained.

� (11) Damian and Chisan [1] acquired a medium-sized software development organization (130
employees) responsible for a software product that has been on the market for about 20 years. The
organization was located in Australia, is part of a multinational company with customers worldwide,
and received its requirements from a marketing department in Canada. They give a description of
the software product, the software processes, and the improvement process from CMM level 1
to CMM level 2, during which requirements engineering was introduced. For each of the three
sequential case studies performed at this organization, they report on data sources and response
rates obtained.
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Table 17.10 The part of the checklist for data analysis that is relevant for case studies, written from
the point of view of the researcher preparing to write a report about the research

12. Descriptions

– Data preparations applied? Data transformations, missing values, removal of
outliers? Data management, data availability.

– Data interpretations? Coding procedures, interpretation methods?
– Descriptive statistics. Demographics? Graphics, tables.
– Validity of the descriptions: See checklist for the validity of descriptive inference.

14. Explanations

– What explanations (causal, architectural, rational) exist for the observations?
– Internal validity: See checklist for the validity of abductive inference.

15. Generalizations

– Would the explanations be valid in similar cases or populations too?
– External validity: See checklist for the validity of analogic inference

16. Answers

– What are the answers to the knowledge questions? Summary of conclusions,
support for and limitations of conclusions.

17.6 Data Analysis

In data analysis, you perform the inferences that you planned earlier. During
research, unexpected things may have happened, and so you may have to adapt
the inference procedures that you designed earlier to changed circumstances, and
you have to revisit the validity questions in the light of the data and of the events of
research execution.

Table 17.6 shows the checklist for data analysis. The part about statistical
inference is absent because from a series of case studies you cannot infer statistical
models. Without further discussion, we present the data analysis of our examples.

17.6.1 Descriptions

� (12) Warne and Hart [11] describe the alignment of the system with the business, the project
management, and the system development method used in the case and give descriptive statistics
of top management support and user involvement.

� (12) Damian and Chisan [1] provide descriptions of the requirements engineering practices in
their case organization and give some descriptive statistics of the results of the interviews and
questionnaires filled in during their third case study.
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17.6.2 Explanations

� (14) Warne and Hart [11] formulated the theory of information wards before doing their case study.
This theory provides a conceptual framework by which an organization is modeled as a collection
of stakeholders who own processes and data, called an “information ward,” and will defend some
of their ward when it is threatened. This is an architectural theory. The organization is modeled as
a collection of components (stakeholders, processes, information systems, information wards) with
capabilities, and the phenomenon of information system development will trigger a mechanism in
stakeholders (defending their ward) that will produce other phenomena (sabotage). The research
goal was to explore the effect of organizational conflict on information system development, and
prior to doing the case study, they intended to use the theory of information wards as theoretical
framework [11, p. 191].

� (14) Damian and Chisan [1] did not start with a particular theory about requirements engineering
improvement. Their case study was exploratory. They describe a sequence of three case studies
done in the same organization, where after each study, new knowledge questions were formulated
based on knowledge acquired in the previous study. After the second study, the conceptual
framework was expanded to include interactions between requirements engineering and other
practices as well as social processes, and the third study produced a theory of requirements
engineering process improvement that we have discussed earlier in Chap. 14 (Abductive Inference
Design). Damian and Chisan described the theory in causal form, but their paper contains sufficient
information to extract an architectural explanation of this causal theory, as we did in Chap. 14.
Damian and Chisan noted other possible explanations of their observations, namely, that new
management was responsible for the improvements and that changes in some other working
procedures could also have affected the improvements that they observed [1, pp. 447–448].

17.6.3 Analogic Generalizations

� (15) Warne and Hart [11] selected a failed project for which the major conditions of success
were satisfied. This corresponds to their population predicate and so reveals their intended target
of generalization. Their generalization is that the larger the scope of a proposed information
system, the more likely it is to intersect with political information wards, which would produce
political conflict and sabotage of the development project. After an analysis of the literature on
types of organization, they propose to narrow down the population to projects in divisionalized
bureaucracies, for which the major conditions of success were satisfied.

� (15) Damian and Chisan [1] selected an organization that had introduced requirements engineer-
ing, and this seems to be their originally intended scope of generalization. After the case study, this
scope had narrowed down to organizations that introduced requirements engineering as part of a
move in software engineering maturity from CMM 1 to CMM 2 and that have a similar architecture
consisting of a development organization, users who interact with the development organization,
and a marketing department who provides requirements [1, p. 448]. The generalization is not
claimed to hold for smaller organizations nor for organizations that do not develop software
products.
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17.6.4 Answers

The answers to the knowledge questions should summarize the conclusions of the
data analysis and add nothing new:

� The knowledge question of Warne and Hart [11] was:

– What are the mechanisms that can lead to failure of large information system development
projects of which the major conditions of success are satisfied?

Their answer is that in divisionalized bureaucracies, the larger the scope of a proposed information
system, the more likely it is to intersect with political information wards, which would produce
political conflict and sabotage of the development project.

� The knowledge question of Damian and Chisan [1] was:

– How do improvements in requirements engineering processes relate to improvements in
productivity, quality, and risk management?

The causal part of their answer is a list of factors impacted positively by the introduction of
requirements engineering. The architectural part, as constructed in Chap. 14 (Abductive Inference
Design), is that the introduction of cross-functional teams and a change control board improves
productivity of developers and the quality of the product and reduces project risk.

17.7 Implications for Context

Table 17.7 lists the checklist items about implications for context. Question 1 of
the checklist asked for the knowledge goal, and question 2 about any improvement
goal. If there is no improvement goal, implications for the improvement goal are
interpreted as implications for practice:

� (17) Warne and Hart [11] observe that they have contributed to the knowledge about organizational
causes of project failures.
(18) Their implication for practice is that not only should developers beware of political problems,
but should realize that the scope of the system itself can create these problems.

� (17) Damian and Chisan’s [1] observe that they have contributed to knowledge about the costs and
benefits of requirements engineering in practice. Their conclusion for research is that collaboration
between developers is an important subject for further research [1, p. 445].
(18) For practitioners, the case study results describe a number of practices that can increase the
benefits of requirements engineering, such as cross-functional teams and change management.

Table 17.11 The checklist for implications of the research results

17. Contribution to knowledge goal(s) Refer back to items 1 and 3.
18. Contribution to improvement goal(s)? Refer back to item 2.

– If there is no improvement goal: is there a potential contribution to practice?



www.manaraa.com

244 17 Observational Case Studies

Notes

1Page 225, checklists for observational case study research. The classic reference for case
study methodology is still Yin, in several editions [14, 15]. Denscombe [2] gives a practical intro-
duction to observational case study research in one chapter plus some supporting chapters about
measurement methods. Robson [8] gives a more extensive but still very practical introduction.
Flyvberg [4] defends case studies as a valid research theory for theory building and generalization.

Kitchenham et al. [7] and Glass [5] give checklists for software engineering method and tool
evaluation from the point of view of a company considering the adoption of new technology.
From this point of view, case studies are pilot studies. In this book, we take the point of view
of researchers who want to learn about the experiences of using technology in practice.

Eisenhardt [3] describes an approach to theory building in case study research that emphasizes
open questions, multiple case studies, and integrating conflicting results from the literature. Data
analysis commences as soon as the first case study is done. She emphasizes the selection of
confirmatory cases, which she calls “theoretical sampling.”

Verner et al. [10] provide a workflow for doing case studies where the main line of activity is
similar to the top-level structure of our checklist, and parallel activities are research management
tasks such as data management and relationship building with potential case study sites. Their
checklist contains advice on practical matters but is less detailed on inference and validity than the
checklist of this book.

Runeson et al. [9] provide checklist for case studies in software engineering research. I have
compared this checklist in detail with a precursor of the one used in this book [12, 13]. The
checklists are similar, but in the one by Runeson et al. no attention is spent on architectural
explanation and analogy. They provide an extensive version of the checklist for researchers and
summaries of the checklist for writers and readers of research reports.

Relatively unknown but very useful is a checklist for generalization from case studies given
by Kennedy [6] for evaluation researchers.
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Chapter 18
Single-Case Mechanism Experiments

A single-case mechanism experiment is a test of a mechanism in a single object
of study with a known architecture. The research goal is to describe and explain
cause-effect behavior of the object of study. This can be used in implementation
evaluation and problem investigation, where we do real-world research. It can also
be used in validation research, where we test validation models. In this chapter we
restrict ourselves to validation research, and in the checklist and examples the object
of study is a validation model.

Single-case mechanism experiments are at the same time single-case causal
experiments (Chap. 14, Abductive Inference Design). They investigate the effect of
a difference of an independent variable X (e.g., angle of incidence) on a dependent
variable Y (e.g., accuracy). But not all causal experiments are mechanism experi-
ments. In a mechanism experiment, the researcher has access to the architecture of
the object of study and explains the behavior of the object of study in terms of this
architecture. This is not true of other kinds of causal experiments.

In this chapter, I use the phrase mechanism experiment to indicate single-case
mechanism experiments. The description of the research context, research problem,
and design of a mechanism experiment should be documented in an experiment
protocol. Events during execution of the experiment and details of data analysis
should be documented in a separate report, sometimes called an experiment log. In
the rest of this chapter, we discuss how the checklist of Appendix B is applied to
single-case mechanism experiments used in validation research.

18.1 Context

Table 18.1 gives the checklist for the research context, written from the point
of view of the researcher preparing to do the research. Mechanism experiments
can be done at any point in the engineering cycle. Researchers may evaluate
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Table 18.1 The checklist for the research context. Initial questions to position your research, written
from the point of view of the researcher preparing to do the research

1. Knowledge goal(s)

– What do you want to know? Is this part of an implementation evaluation, a problem
investigation, a survey of existing treatments, or a new technology validation?

2. Improvement goal(s)?

– If there is a higher-level engineering cycle, what is the goal of that cycle?
– If this is a curiosity-driven project, are there credible application scenarios for the project

results?

3. Current knowledge

– State of the knowledge in published scientific, technical and professional literature?
– Available expert knowledge?
– Why is your research needed? Do you want to add anything, e.g. confirm or falsify

something?
– Theoretical framework that you will use?

implementations, investigate problems, and study validation models by single-case
mechanism experiments:

� In an implementation evaluation, a researcher may test a tool used by a manufacturer in its
manufacturing design process, with the goal of analyzing the current architecture of the tool. An
example was given in Chap. 5 on implementation evaluation and problem investigation (p. 47).

� In a problem investigation, a researcher may be interested in the architecture of a particular social
network, and the curiosity-driven research goal may be to find out what groups or social actors are
components of this network, what their capabilities are, and how they interact. To learn about a
social network, the researcher may send messages to a network or may ask experimental subjects
to perform actions in the network. This would be single-case research because it concerns one
social network, and it would be mechanism research because the researcher can track and trace
mechanisms of interaction in the network.

� In validation research, researchers may test algorithms in the laboratory in a simulated context
or may do a serious game within an artificial project to investigate the effects of a new way of
developing software.

In this chapter, we restrict our attention to mechanism experiments that are used
in validation studies, and so in our examples, the knowledge goal of the research
project is to validate new technology. The improvement goal in our examples is to
develop some new technology. Current knowledge about a new technology may be
based on earlier versions of the same technology and on earlier research in the new
technology. We will use two examples in this chapter, one of which is our old friend
the DOA algorithm:

� The direction of arrival estimation algorithm developed in the DOA project [5] was tested with
a simulated array antenna and a wave arrival scenario. The first three checklist questions were
answered as follows:

(1) The knowledge goal was treatment validation.
(2) The higher-level engineering goal was the development of an accurate estimation algorithm.

The project was utility driven, with an industrial sponsor.
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(3) The knowledge context consisted of a problem theory described in Chap. 5 on implementation
evaluation and problem investigation (p. 44) and of design theories described in Chap. 7 on
treatment validation (p. 63).

� Kumar et al. [1] describe a set of simulations of different organizational coordination mechanisms
for scheduling medical tests of patients in a hospital. This is a problem of workflow and information
system design, as the mechanisms differ in the order of activities, the allocation of tasks to actors,
and the information flow between actors. Each coordination mechanism is an artifact whose
properties need to be investigated. Four mechanisms in total were compared. The first three
checklist questions were answered as follows:

(1) The knowledge goal was to learn which of these four mechanisms would produce the best
combination of patient flow (time taken by the medical tests) and tardiness (time after due date
that test result becomes available). This is a validation research goal.

(2) The research was utility driven, with the improvement goal to better utilize hospital resources.
(3) The knowledge context is general scheduling knowledge and domain-specific knowledge about

patient scheduling in hospitals.

18.2 Research Problem

Table 18.2 gives the checklist for research problems. Because we restrict ourselves
to validation research, the object of study consists of an artifact prototype interacting
with a simulation of the context. The conceptual framework therefore will include
the framework already developed when the artifact was designed. This framework
may have to be extended with constructs and indicators needed to measure the
performance of the validation model.

In validation research, the knowledge questions may be about different aspects
of performance of the artifact in context:

• Effect questions: What effects are produced by the interaction between the
artifact prototype and the simulated context? Why?

• Requirements satisfaction questions: Do the effects of the simulation satisfy
requirements? Why (not)?

• Trade-off questions: What happens if the artifact architecture is changed? Why?
• Sensitivity questions: What happens if the context is changed? Why?

The population of validation research is not the set of similar validation models, but
it is the set of all real-world instances of artifact � context. The validation model is
investigated to learn something about real-world behavior and is not interesting in
itself. The trade-off and sensitivity questions help to clarify the population predicate.
For which classes of artifacts can we expect similar performance? In which class of
contexts?

� (4) The conceptual framework of validation research in the DOA project [5] consists of a conceptual
framework for signal reception, described earlier in Chap. 5 on implementation evaluation
and problem investigation (p. 44), and of the conceptual framework for the DOA estimation
algorithm, described earlier in Chap. 7 on treatment validation (p. 63).

(5) There are two groups of knowledge questions:
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Table 18.2 The checklist for the research problem, written from the point of view of the researcher
preparing to do the research

4. Conceptual framework

– Conceptual structures? Architectural structures, statistical structures?
– Chance models of random variables: Semantics of variables?
– Validity of the conceptual framework? Clarity of definitions, unambiguous applica-

tion, avoidance of mono-operation and mono-method bias?

5. Knowledge questions

– Open (exploratory) or closed (hypothesis-testing) questions?
– Effect, satisfaction, trade-off or sensitivity questions?
– Descriptive or explanatory questions?

6. Population

– Population predicate? What is the architecture of the elements of the population?
In which ways are all population elements similar to each other, and dissimilar to
other elements?

– Chance models of random variables: Assumptions about distributions of vari-
ables?

� What is the execution time of one iteration of the DOA algorithms? Is it less or more than
7.7 ms? Why?

� What is the accuracy of the DOA estimations? Can they recognize angles of at least 1ı?

(6) The intended population is the set of DOA estimation algorithms running in a satellite TV system
in cars.

� (4) Kumar et al. [1] use general scheduling concepts taken from the operations research literature,
such as earliest due date, tardiness, slack, and patient flow time. In this particular problem
context, tardiness is a measure for how late a test is completed after its due date, slack is the
difference between the due date of a test and the current date, and patient flow time is the time
between release time of the earliest test of a patient (the earliest date at which the earliest test
of the patient can be taken) and completion time of the last test for that patient.

(5) Kumar et al. do not state their knowledge questions, but they investigate tardiness and flow time
for different coordination mechanisms. So apparently the knowledge questions are:

– What are the tardiness and flow time of patient test scheduling for each coordination
mechanism? Why?

These are effect questions, and trade-offs are analyzed for the compared mechanisms.

(6) The population is not specified explicitly, but from the motivating introduction we can conclude
that it is the set of all hospitals, defined by the following architecture: They consist of the so-
called medical units providing medical care to patients, such as neurosurgery and cardiology,
and of ancillaries such as radiology and the blood laboratory, which perform tests on patients as
ordered by the medical units. Units and ancillaries have their own objectives, such as providing
comfort to patients and using resources optimally. The compared coordination mechanisms
allocate decisions about when to do a test variously to units, ancillaries, or a central coordinator
and assume different kinds of information flows between units and ancillaries.
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18.3 Research Design and Validation

The design of mechanism experiments requires decisions about the acquisition of
validation models, sampling, treatment, and measurement. It also requires alignment
of these decisions with the planned inferences from the data. The checklists for
inference design are given in Sect. 18.4, and we illustrate their application to
research design here.

18.3.1 Constructing the Validation Model

Table 18.3 gives the checklist for the OoS, which in validation research is a
validation model, consisting of an artifact prototype and a model of the context. The
artifact prototype is constructed by the researcher, and the model of the context may
be constructed by the researcher too, or it may be acquired by the researcher in some
other way. For example, the artifact prototype may run in a real-world context used
as model of other real-world contexts. Before we discuss validity of a validation
model, we look at the examples:

� (7.1) Two prototypes were made of the estimation algorithms in the DOA project [5], one in Matlab
and one programmed in C on an experimental processor. In both cases, the simulated context
consisted of sources that transmit waves, a uniform linear antenna array that receives waves,
a beamsteering component that calculates time delays across antennas, and a beamforming
component that composes the signal to be processed by the rest of the system. Simulations with
Matlab were done with 5 wave sources located at angles of �30ı, �8ı, 0ı, 3ı, and 60ı with respect
to the vector orthogonal to the antenna array. Between simulations, the number of antennas, the
signal-to-noise ratio, and the number of snapshots taken from the antennas was varied.

Table 18.3 The checklist for the object of study, written from the point of view of the researcher
preparing to do the research. The OoS is a validation model

7.1 Acquisition of Objects of Study (validation models)

– How do you construct a validation model? What architecture should it have?
– Validity of OoS

- Inference support. Which inferences would be valid with respect to this
design? See checklists for validity of descriptive statistics, abductive and
analogic inferences.

- Repeatability. Could other researchers use your report to construct or
select a similar OoS?

- Ethics. Are people informed that they will be studied, and do they consent
to this? Are they free to stop at any time without giving reasons, and do
they know this?
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� (7.1) The artifacts validated by Kumar et al. [1] were coordination mechanisms between medical
units and ancillaries to schedule patient tests:

– In a decentralized mechanism, each ancillary schedules patient tests independently.
– In a balanced coordination mechanism, the requesting medical unit imposes a patient flow due

date.
– In a centralized mechanism, ancillaries additionally coordinate their schedules among each

other.
– In a totally centralized mechanism, all coordination is done by a single scheduler [1, pp. 225–

228].

These four artifacts were tested in a simulation of a hospital with three units, four ancillaries, and
30 patients [1, pp. 225].

To be valid, the validation model must support descriptive, abductive, and analogic
inferences. Remember that we are using the term “validation” in two ways. In the
engineering cycle, we assess the validity of a treatment design with respect to the
problem it is designed for, and in the empirical cycle, we assess the validity of
inferences. Here, we are interested in the second kind of validity. To increase the
validity of inferences based on a validation model, the validation model must satisfy
some requirements.

For descriptive inference, it is important that the chance model for variables is
defined (Table 18.7). The meaning of indicators is defined in terms of observable
properties of the validation model, i.e., of the artifact prototype and the model of the
context. If symbolic data will be produced, then interpretation procedures have to
be agreed on too.

Next, consider abductive inferences (Table 18.8). Validation models can sup-
port causal inference if the conditions for single-case causal experiments or
comparative-cases causal experiment, listed in Chap. 14 (Abductive Inference
Design), are satisfied. If the validation model contains people and you want to do
causal inference, you have to assess possible threats to internal validity related to
psychological or social mechanisms of people in the validation model or across
validation models:

• OoS dynamics. Could there be interaction among validation models? Could there
be interaction among people in a validation model? Could there be historical
events, maturation, and dropout of people?

Whether or not we can do causal inference, we should also try to explain phenomena
architecturally. To assess support architectural inference, the following questions
are relevant:

• Analysis. Is there enough information about the architecture of the artifact and
context available to do an interesting analysis later? Is the information exact
enough to do a mathematical analysis? You may want to specify software,
methods, techniques, etc., formally enough and list exactly the assumptions about
entities and events in the context, to be able to do a precise analysis. This will
also facilitate explanatory analysis of observed phenomena later on.
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• Variation. What is the minimal validation model that you can construct to answer
your knowledge questions? Can you omit components that have been specified
in the population predicate? Can the components in a model that you constructed
have restricted capabilities and still provide sufficient information to answer your
knowledge questions? Which generalizations will be licensed by the similarity
between the validation model and an artifact implemented in the real world?
Varying the architecture of the artifact prototype, we actually do a trade-off
analysis. Varying the architecture of the context simulation, we do a sensitivity
analysis.

• Abstraction. The artifact prototype and context simulation will contain compo-
nents not specified in the artifact design but required to run the simulation. Do
these influence the behavior of the validation model? Will there be unwanted
influences from parts of the model of the context that cannot be controlled?
If we want to study the effect of mechanisms in their pure, undisturbed form,
we should eliminate the influence of components and mechanisms not specified
in the architecture. On the other hand, if we want to test the robustness of the
architectural mechanisms under various disturbing influences, we should keep
them.

A validation model may contain human actors, such as students who simulate a
real-world software engineering project. In that case, you may want to be able to
give rational explanations of observed behavior. If you want to do this, you must
prepare for it by ensuring that you can get information about goals and motivations
of actors in the simulation. The threats to validity of rational explanations are
these:

• Goals. Actors may not have the goals that the explanation says it has. Can you
get accurate information about the true goals of actors?

• Motivation. A goal may not motivate an actor as much as the explanation says it
did. Can you get information about the motivation of actors in the simulation?

Generalization from a single-case experiment is done by architectural analogy.
The following questions are important to assess support for analogic inference
(Table 18.9):

• Population predicate. Will the validation model satisfy the population predicate?
In which way will it be similar to implemented artifacts operating in a real-world
context? In which way will it be dissimilar?

• Ambiguity. What class of implemented artifacts in real-world contexts could the
validation model represent? What could be the target of analogic generalization?

In addition to supporting inferences, construction of the OoS must be repeatable
and ethical. Other researchers must be able to repeat the construction, and if people
are participating, the demands of ethics require that participants sign an informed
consent form and must be informed that they are free to stop at any time:
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� (7.1 continued) The architecture of the DOA validation model has been specified mathematically,
and the expected effects produced by it can be proven mathematically. The model contains all
information to provide architectural explanations of phenomena.

But the model abstracts from many components present in the real world. A car moving on
a highway will pass many obstacles that may distort the waves, and these influences have been
idealized away in the simulation. And the model idealizes away variation that is present in the real
world: slightly unequal distances between antennas in an array, waves that are not quite plane, etc.
Support for analogic generalization to the real world is not unlimited, and field tests in real-world
contexts must be done to find out if these idealizations matter.

� (7.1 continued) The hospital architecture assumed by the study of Kumar et al. does not allow
mathematical analysis, but it does allow analysis of events generated during a simulation. It
contains sufficient information to give architectural explanations of phenomena.

But architectural components and capabilities in the model may have capabilities not present
in their real-world counterparts. For example, the model assumes uncertainty about inputs, e.g.,
about due dates, and they do not claim effectiveness when inputs are uncertain, and it assumes
that the hospital departments will not resist change [1, p. 235]. This limits generalizability to real-
world hospitals.

In addition, real hospitals may contain components that are abstracted away in the model, such
as independent practitioners working on the premises of the hospital and independent labs who
do medical tests for the hospital. These additional components of real-world cases may disturb
phenomena produced in a simulation.

18.3.2 Sampling

It may come as a surprise, but in single-case mechanism experiments, we sample
objects of study too. In validation research, we construct a sample of validation
models in sequence. As explained in Chap. 7 (Treatment Validation), this is a
process of scaling up from the laboratory to the field, so the sequence of validation
models studied starts in the lab and ends in the field. As in all processes of
analytical induction, we construct confirming as well as disconfirming cases.
Confirming validation models aim to replicate phenomena produced by earlier
models; disconfirming models are extreme models used to explore the boundary
of the conditions under which the phenomena can and cannot be produced.

The checklist for sampling is given in Table 18.4. The relevant validity consider-
ation is the one for analogic inference:

• Representative sampling, case-based research. In what way will the constructed
sample of models be representative of the population?

At the start of a process of scaling up to practice, our models are not representative
of implemented artifacts in real-world contexts. They are tested under idealized
conditions in the laboratory to assess feasibility of a design idea. Later, when we
scale up to conditions of practice, the models become more realistic. During the
process of scaling up, generalizability to the real world will become increasingly
important, possibly supported by a theory of similitude.
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Table 18.4 The part of the checklist for sampling objects of study for single-case mechanism
experiments, written from the point of view of the researcher preparing to do the research. Objects
of study are validation models

7.2 Construction of a sample

– What is the analytical induction strategy? Confirming cases, disconfirming cases,
extreme cases?

– Validity of sampling procedure

- Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of statistical,
abductive and analogic inferences.

- Repeatability. Can the sampling procedure be replicated by other
researchers?

- Ethics. No new issues.

Table 18.5 Checklist for treatment design of a mechanism experiment in a validation study, written
from the point of view of the researcher preparing to do the research. The OoS is a validation model. A
treatment of a validation model is a scenario in which the context provides stimuli to the artifact

8. Treatment design

– Which treatment(s) will be applied?
– Which treatment instruments will be used? Instruction sheets, videos, lessons, software,

computers, actuators, rooms, etc.
– How are treatments allocated to validation models?

* Are treatments scaled up in successive validation models?

– What is the treatment schedule?
– Validity of treatment design:

* Inference support. Which inferences would be valid with respect to this design?
See the applicable parts of the checklists for validity of statistical, abductive and
analogic inferences.

* Repeatability: Is the specification of the treatment and the allocation to validation
models clear enough so that others could repeat it?

* Ethics. Is no harm done, and is everyone treated fairly? Will they be informed about
the treatment before or after the study?

18.3.3 Treatment Design

Table 18.5 gives the checklist for designing treatments of a validation model.
A validation model consists of an artifact prototype and a model of the context,
and treatments are scenarios that the validation model is exposed to. There are
some surprising confusions here that I will illustrate using a simple example of
drug research. Consider a test of an experimental medicine, in which subjects are
instructed to take the medicine according to some medical protocol, e.g., every
morning before breakfast for the next 6 weeks. The medicine is the artifact; the
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patient and his or her environment are the context. In this situation, there are three
different interpretations of the term “treatment”:

• The patient is treated by an experimental medicine. In other words, the context is
treated by the artifact.

• An experimental medicine is tested by treating it to a realistic context. In other
words, the artifact is treated by the context.

• The patient is instructed to take an experimental medicine according to a medical
protocol. In other words, the artifact and context are treated to a scenario.

In validation research, we use the word “treatment” in the third sense. For example,
an experimental software prototype may be treated to an input scenario from a
simulated context, or in a serious game the participants may be treated to a scenario
from a simulated context.

To deliver the treatment scenario, treatment instruments may be needed, such
as software to generate scenarios, sensors to collect data from a simulated context,
instruction sheets, videos or lessons for human participants, equipment and rooms
to put them in, etc.

Treatments must be allocated to objects of study, which in validation research
means that the researcher must decide which application scenarios to test on which
models. When scaling up from lab to practice, the first models are exposed to toy
scenarios, and the final models are exposed to realistic scenarios.

All of this must be scheduled. This is a practical and important matter because
the schedule is limited by research budgets and research project deadlines.

For causal inference, the following questions are relevant to assess the degree of
support of a treatment for causal explanations (Table 18.8):

• Treatment control. What other factors than the treatment could influence the
validation models? If a validation model contains people, then possible influences
are the treatment allocation mechanism, the experimental setup, the experi-
menters and their expectations, the novelty of the treatment, compensation by
the researcher, and rivalry or demoralization among subjects. For software or
hardware in the validation model, we would have to consider virtual or physical
factors that could influence their behavior.

• Treatment instrument validity. If you use instruments to apply the scenario, do
they have the effect on the validation model that you claim they have?

To conclude something about the target of the validation model, we do analogic
inference. To assess support for analogic inference, the following questions are
relevant (Table 18.9):

• Treatment similarity. Is the specified treatment scenario in the experiment similar
to treatments in the population? Or are you doing an extreme case study and
should it be dissimilar?

• Compliance. Is the treatment scenario implemented as specified?
• Treatment control. What other factors than the treatment could influence the

validation models? This is the same question as mentioned above for causal
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inference. The relevance for analogic generalization is that if there are factors
that we could not control, we should ask if the implemented treatment should
be interpreted as another treatment, namely, as the intended treatment plus
uncontrolled factors.

Increased control over extraneous factors improves support for causal inference
(internal validity) but decreases support for analogic inference to field conditions
(external validity) because it makes the simulation less realistic.

In addition to support for inferences, treatment validity includes repeatability and
ethics. The experiment protocol must specify the treatment scenarios explicitly, so
that other researchers could repeat the test using their own validation model. These
tests are replications: The results obtained earlier must be reproducible.

If people are involved, ethical considerations apply. People must be treated fairly,
and no harm must be done. If deception is used, for example, by withholding
some information from the subjects, this must not be unfair or harmful either. In a
debriefing after the experiment, subjects must be informed of the true research goal,
questions, design, and results of the experiment:

� (8) In the DOA test, the scenarios are all combinations of values for signal-to-noise ratios, numbers
of snapshots, and number of antennas. No treatment instruments were needed other than the
Matlab tool. The treatment scenarios were not intended to be fully similar to real-world scenarios,
but they were realistic enough to be able to assess which algorithm was most promising in the
intended context and could therefore be selected for further investigation. The researcher had full
control of all factors that could influence the validation model. This improved support for causal
inference but decreased support for analogic inference to real-world conditions.

� (8) Kumar et al. [1, p. 225] tested many scenarios in which six parameters were varied: number of
tests per patient, test start times, processing time, due dates, load of ancillaries, and patient flow
and test tardiness objectives. These are all representative of real-world scenarios. No treatment
instruments were needed. The level of control was high, which in this example too improved support
for causal inference but decreased support for analogic inference to the real world.

18.3.4 Measurement Design

Table 18.6 gives the checklist for measurement specification. Measurement requires
the definition of measured variables and scales, and these are usually defined
already in the conceptual framework of the research, which for validation research
has already been designed as part of artifact design.

The data sources are components of the validation model from which you will
acquire data, e.g., software or hardware components or people participating in the
simulation. Measurement instruments include clocks, sensors, probes in software,
log analyzers, as well as interviews and questionnaires for people participating
in the experiment. There should be an infrastructure for storing and managing
measurement data. Traceability of data to its source (provenance) and availability
of the data to other researchers should be decided on.
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Table 18.6 Checklist for measurement design of a mechanism experiment, written from the point of
view of the researcher preparing to do the research

9. Measurement design

– Variables and constructs to be measured? Scales, chance models.
– Data sources? People (e.g. software engineers, maintainers, users, project

managers, politically responsible persons, etc.), primary data (e.g. source code,
log files, bug tracking data, version management data, email logs), primary
documents (e.g. project reports, meeting minutes, organization charts, mission
statements), etc.

– Measurement instruments? Interview protocols, questionnaires, video recorders,
sound recorders, clocks, sensors, database queries, log analyzers, etc.

– What is the measurement schedule? Pretests, posttests? Cross-sectional or
longitudinal?

– How will measured data be stored and managed? Provenance, availability to other
researchers?

– Validity of measurement specification:

* Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of abductive
and analogic inferences.

* Repeatability. Is the measurement specification clear enough so that others
could repeat it?

* Ethics. Which company data must be kept confidential? How is privacy of
persons respected?

Validation models may support causal inference if they are used in single-
case and comparative-cases causal experiments. But even if they are not used this
way, the validity threats of causal inference are still relevant because you want to
avoid disturbance of the validation model. The important question with regard to
measurement is then the following (Table 18.8):

• Measurement influence. Will measurement influence the validation model?

If it does, then this should be subtracted from the data in order to identify treatment
effects.

To assess support for generalization by analogic inference, the following ques-
tions must be answered (Table 18.9):

– Construct validity. Are the definitions of constructs to be measured valid?
Clarity of definitions, unambiguous application, avoidance of mono-operation
and mono-method bias?

– Measurement instrument validity. Do the measurement instruments measure
what you claim that they measure?

– Construct levels. Will the measured range of values be representative of the
population range of values?

Finally, measurements should be repeatable by other researchers and should be
ethical for any human subjects. Confidentiality and privacy should be respected:
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� The variables measured in the DOA project [5] are degrees of incidence and decibels of the signal.
Their definitions are taken from the literature and need not be included in a research report.

The artifact prototype itself and the simulation of the context are at once the source of data and
the measurement instruments.

The researcher took care to spread the angles of incidence, signal-to-noise ratios, and numbers
of antennas to have a reasonable coverage of the ranges of these values in real-world situations.
This reduces the construct level validity threat mentioned above. Practical aspects of research
design, such as data storage and management, are not reported.

� Kumar et al. [1] measure variables like patient blocked time, test processing time, and ancillary
blocked time. These are defined in their conceptual research framework, and the authors provide
arguments toward the validity of these variables as indicators of the efficiency of the coordination
mechanisms studied.

The simulation software at once generates the simulations, is the source of data, and is the
measurement instrument. Parameters of the simulation are patient load, mean inter-arrival time,
due date, etc., and these were set to values for a small hospital [1, p. 225]. This introduces a
construct level validity threat. Practical aspects of research design, such as data storage and
management, are not reported.

18.4 Inference Design and Validation

Single-case mechanism experiments are case based, and inferences from them are
done in three steps: description, architectural explanation, and generalization by
analogy. The construction of validation models is done with the goal of supporting
these kinds of inference, and validity considerations for them have already been
given above. Examples of the inferences themselves are given later, in the section
on data analysis. Here we have a brief look at the relevant parts of the checklist.

Table 18.7 gives the checklist for descriptive inference. Descriptive inference in
single-case mechanism experiments is often the presentation of data in digestible
form such as graphs or tables with aggregate information. As usual, data may be
transformed, and symbolic data such as images or text must be interpreted. The
validity requirements for descriptive inference all ask in one way or another whether
the researcher added information to the data that is not warranted by the observed
phenomena or by prior knowledge.

Table 18.8 gives the checklist for abductive inference. If the behavior of the
validation model is time independent and if effects are transient, then you can do
single-case causal experiments with them. And if they can be replicated, you can
do comparative-cases causal experiments with them. Since the architecture of the
validation model is known, you should try to explain causal relations established
this way architecturally. If the validation model contains people, then you may be
able to explain their behavior rationally.

Table 18.9 gives the checklist for analogic inference. Generalization from
mechanism experiments is done by architectural analogy: In objects with a similar
architecture, similar mechanisms will produce similar phenomena. The purpose of
experimenting with validation models is to assess the required similarity between
model and target. This goes both ways: How similar must a validation model
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Table 18.7 Checklist for descriptive inference, written from the point of view of the researcher
preparing to do the research. The OoS is a validation model

10.1 Descriptive inference design

– How are words and images to be interpreted? (Content analysis, conversation
analysis, discourse analysis, analysis software, etc.)

– What descriptive summaries of data are planned? Illustrative data, graphical
summaries, descriptive statistics, etc.

– Validity of description design

* Support for data preparation.

- Will the prepared data represent the same phenomena as the
unprepared data?

- If data may be removed, would this be defensible beyond reason-
able doubt?

- Would your scientific opponents produce the same descriptions
from the data?

* Support for data interpretation.

- Will the interpretations that you produce be facts in your conceptual
research framework? Would your scientific peers produce the
same interpretations?

- Will the interpretations that you produce be facts in the conceptual
framework of the subjects? Would subjects accept them as facts?

* Support for descriptive statistics.

- Is the chance model of the variables of interest defined in terms of
the population elements?

* Repeatability: Will the analysis repeatable by others?
* Ethics: No new issues.

be to real-world implementations to learn something from the model about those
implementations? Conversely, how similar must an implementation be to show
behavior similar to the validation model? You test models that represent different
artifact versions and with variations of the context. Testing prototypes of different
artifacts in the same context is trade-off analysis, and testing different contexts
with the same artifact is sensitivity analysis. If the mechanism experiment is part
of a process of scaling up from the laboratory to the field, then at every step, the
research goal is to acquire sufficient certainty about the repeatability of behavior at
the current scale, so as to justify the step to the next level of scaling up.
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Table 18.8 Checklist for inference design of a mechanism experiment in validation research, written
from the point of view of the researcher preparing to do the research. The OoS is a validation model

10.3 Abductive inference design

– What possible explanations can you foresee? What data do you need to give those
explanations? What theoretical framework?

– Internal validity

* Causal inference

- OoS dynamics. Could there be interaction among OoS’s? Could there be
historical events, maturation, and drop-out of OoS’s?

- Treatment control. What other factors than the treatment could influence
the validation models? The treatment allocation mechanism, the exper-
imental setup, the experimenters and their expectations, the novelty of
the treatment, compensation by the researcher, rivalry or demoralization
about the allocation?

- Treatment instrument validity. If you use instruments to apply the scenario,
do they have the effect on the validation model that you claim they have?

- Measurement influence. Will measurement influence the validation mod-
els?

* Architectural inference

- Analysis: The analysis of the architecture may not support its conclusions
with mathematical certainty. Components fully specified? Interactions fully
specified?

- Variation: Do the real-world case components match the architectural
components? Do they have the same capabilities? Are all architectural
components present in the real-world case?

- Abstraction: Does the architectural model used for explanation omit
relevant elements of real-world cases? Are the mechanisms in the
architectural model interfered with by other mechanisms, absent from the
model but present in the real world case?

* Rational inference

- Goals. An actor may not have the goals assumed by an explanation. Can
you get information about the true goals of actors?

- Motivation. A goal may not motivate an actor as much as assumed by an
explanation. Can you get information about the true motivations of actors?
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Table 18.9 Checklist for inference design of a mechanism experiment in validation research, written
from the point of view of the researcher preparing to do the research. The OoS is a validation model

10.4 Analogic inference design

– What is the intended scope of your generalization?
– External validity

* Object of Study similarity.

- Population predicate. Will the validation model satisfy the population
predicate? In which way will it be similar to implemented artifacts operating
in a real-world context? In which way will it be dissimilar?

- Ambiguity. What class of implemented artifacts in real-world contexts
could the validation model represent? What could be the target of analogic
generalization?

* Representative sampling, case-based research: In what way will the con-
structed sample of models be representative of the population?

* Treatment.

- Treatment similarity. Is the specified treatment scenario in the experiment
similar to treatments in the population?

- Compliance. Is the treatment scenario implemented as specified?
- Treatment control. What other factors than the treatment could influence

the validation models? Could the implemented treatment be interpreted
as another treatment?

* Measurement.

- Construct validity. Are the definitions of constructs to be measured
valid? Clarity of definitions, unambiguous application, avoidance of mono-
operation and mono-method bias?

- Measurement instrument validity. Do the measurement instruments mea-
sure what you claim that they measure?

- Construct levels. Will the measured range of values be representative of
the population range of values?
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Table 18.10 The part of the checklist for research execution relevant for mechanism experiments,
written from the point of view of the researcher preparing to write a report about the research

11. What has happened?

– What has happened when the OoS’s were selected or constructed? Did they
have the architecture that was planned during research design? Unexpected
events for OoS’s during the study?

– What has happened during sample construction? Could you build or acquire all
objects of study that you planned to study?

– What has happened when the treatment(s) were applied? Mistakes, unexpected
events?

– What has happened during measurement? Data sources actually used,
response rates?

18.5 Research Execution

We now switch perspective from designing your research to executing it and
reporting about it. Collecting a report starts as soon as you start executing the
experiment. Table 18.10 lists the checklist items for reporting about research
execution. Not everything that happens during execution of a research design needs
to be reported. What information about events during research execution did you use
to interpret your results? What information would be useful to provide if someone
wants to repeat your research? The reader of a report must trust that the writer
included all relevant information, so as a writer you will have to be honest:

� (11) The report about the DOA project gives no information about the Matlab models. However,
it contains detailed information about the construction of the C program that implemented the
MUSIC algorithm and the relevant properties of the experimental Montium2 processor on which it
was executed [5, Chap. 5].

� (11) Kumar et al. [1] give no information about the construction of their simulation or about the
events during simulation.

18.6 Data Analysis

We now perform the inferences planned, point no: 13 is missing. Please check and
provide the same. for in our research design. Table 18.11 shows the checklist for
data analysis. The part about statistical inference is absent because we are studying
single cases, e.g., single simulations and single prototypes, and not samples of
cases.

In the rest of this section, we give examples without further comments. I should
repeat here that written reports may present information differently. For example,
validity has been considered during research design and inference design and should
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Table 18.11 The part of the checklist for data analysis that is relevant for a mechanism experiment,
written from the point of view of the researcher preparing to write a report

12. Descriptions

– Data preparations applied? Data transformations, missing values, removal of
outliers? Data management, data availability.

– Data interpretations? Coding procedures, interpretation methods?
– Descriptive statistics. Demographics, sample mean and variance? Graphics,

tables.
– Validity of the descriptions: See checklist for the validity of descriptive inference.

14. Explanations

– What explanations (causal, architectural, rational) exist for the observations?
– Internal validity: See checklist for the validity of abductive inference.

15. Generalizations

– Would the explanations be valid in similar cases or populations too?
– External validity: See checklist for the validity of analogic inference

16. Answers

– What are the answers to the knowledge questions? Summary of conclusions,
support for and limitations of conclusions.

be reviewed again during data analysis. A written report may present the result
of all validity considerations only once, for example, in a separate section; it may
distribute the discussion over the different parts of research design, as we did here;
or it may distribute the discussion over the different parts of the data analysis.

18.6.1 Descriptions

� (12) Vrielink [5] reports sensitivity of a 16-element antenna in different directions, the spectrum
recognized by DOA algorithms in different directions, and DOA estimation errors in different
directions. Execution times on the intended Montium processor were estimated, not observed,
because the processor was not implemented yet. There are in addition qualitative observations
such as that changing the number of antennas does not result in a significant difference in
performance between the different estimation algorithms [5, p. 24]. This is a sensitivity property.

� (12) Kumar et al. [1] reported the percentage improvement (reduction) in tardiness of the different
mechanisms over the base configuration of decentralized ancillaries. All improvement data are
given in an appendix, and the paper contains numerous graphs visualizing the improvement trends
for different settings of the parameters.
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18.6.2 Explanations

� (14) The functional correctness of the output of the tested algorithms in the DOA project is
explained by the algorithm structure. This is what the algorithms were designed for. The time
performance properties are explained by the computational complexity of various steps [5, pp. 20,
55, 58]. He explained measured accuracy of different algorithms in terms of physical properties of
the waves [5, p. 23]. These are architectural explanations.

There are also causal explanations. For example, the number of antennas is positively
correlated with the spatial resolution of the tested algorithms, and this is interpreted causally:
Increasing the number of antenna causes an increase in spatial resolution of the compared
algorithms [5, p. 24]. Presumably, this causal explanation in turn can be explained architecturally
by the structure of the algorithms and architectural properties of the antenna-wave system.

Other observations remain unexplained, such as that one algorithm performed better than the
other in tests where the signal-to-noise ratio was low [5, p. 27].

� (14) As explained earlier, Kumar et al. studied four coordination mechanisms, a decentralized,
balanced, centralized, and totally centralized one. See the discussion of item (7.1) above. The data
showed that the totally centralized solution improved on the centralized ancillary solution, which
improved on the balanced solution, which improved on the decentralized ancillary solution. The
authors explain this by the fact that each of these mechanisms includes those that follow it in this
list. Note that the quantitative amount of the observed improvements cannot be explained, but their
ordering can.

18.6.3 Analogic Generalizations

� (15) The results of the DOA experiments are generalized to real-world implementations of
the algorithms, running in a satellite TV system that is part of a car driving on a road. This
generalization is supported by the similarity of algorithms in the laboratory and in the field. The
laboratory simulation of the context may be less similar to the real-world context, because in the real
world, various conditions of practice may disturb the results obtained in the laboratory simulation.
Field tests are needed to give more support to the generalization.

� (15) The simulations by Kumar et al. can probably be replicated by other researchers,
in which case they are generalizable, by architectural analogy, to other simulations.
Generalization to real hospitals is less well supported. The simulation ignores
uncertainty about inputs and resistance to change. There are many architectural
capabilities, limitations, and mechanisms in a real hospital that may interfere with the
simulated coordination mechanisms in a way that makes the results unreproducible
in the real world. To learn more about this, real-world case studies should be done.
If a hospital decides to implement one of these coordination mechanisms, then we
may be able to study the resulting mechanisms in detail in this case. This would be
an evaluation study [2].

Some generalizations may not be based on architectural similarity but on feature-
based similarity. If we think that an observed phenomenon generalizes to similar
cases without understanding the mechanism behind it, then we have postulated an
empirical regularity. The phenomenon may indeed be regular, so that we can use
it as a prediction. But if it remains unexplained, we should treat it as an empirical
regularity that may be broken for reasons that we do not understand.
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When practitioners use an empirical regularity for which we have no architectural
explanation, they can manage the risk that the regularity is violated by moving in
small steps. Designs that have been proven to work in practice are used in new
situations with only small differences from proven cases. This will make the set of
proven cases expand gradually. This is one of the motivations behind evolutionary
design [3, 4]:

� For example, the observation in the DOA project that one algorithm performed better than the
other in tests where the signal-to-noise ratio was low [5, p. 27] is unexplained. Suppose that this
phenomenon cannot be explained in terms of the different structures of the algorithms. Then we
can still treat it as an empirical regularity. There is a slight architectural flavor to this generalization,
because the generalization is that in cases with similar architecture, the same phenomenon will
occur. But as long as we do not understand how this architecture produces this phenomenon, we
should treat it as an empirical regularity. When it is used, it is safe to use it in situations that only
differ incrementally from situations where it has shown to be true.

18.6.4 Answers to Knowledge Questions

� (16) The DOA project has a number of effect questions:

– What is the execution time of one iteration of the DOA algorithm? Is it less or
more than 7.7 ms? Why?

– What is the accuracy of the DOA estimations? Can they recognize angles of at
least 1ı?

The data analysis provides answers to these questions for two algorithms that can
be tentatively generalized from the laboratory to the field. One of the algorithms was
shown to satisfy the requirements on execution speed and accuracy.

� (16) Kumar et al. did not state a knowledge question, but we assumed it to be the
following:

– What are the tardiness and flow time of patient test scheduling for each
coordination mechanism? Why?

The data analysis provided support for the generalization that in the absence of
disturbing mechanisms and for a simulation of a small hospital, the four coordination
mechanisms increasingly reduce tardiness, where total centralization gave the best
results. Without further research, this cannot be generalized to real hospitals.

18.7 Implications for Context

Table 18.12 lists the checklist for relating the research results to the knowledge
context and improvement context. The knowledge context in validation research is
what is known so far about the artifact being validated. The improvement context is
the engineering cycle of the artifact:
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Table 18.12 The checklist for implications of the research results

17. Contribution to knowledge goal(s) Refer back to items 1 and 3.
18. Contribution to improvement goal(s)? Refer back to item 2.

– If there is no improvement goal: is there a potential contribution to practice?

� (17) The DOA mechanism experiment [5] added knowledge about the performance of the
estimation algorithms in the particular context of satellite TV reception.

(18) The research was sponsored by a hardware manufacturer, who used the results in the
design and development of a new satellite TV system for cars.

� (17) Kumar et al. [1] were the first to apply their centralized and decentralized coordination
mechanisms to patient test scheduling. So this was the first knowledge about these artifacts in
this context.
(18) Their research was motivated by one particular hospital, and each of their mechanisms
improved patient test scheduling performance compared to current performance in the hospital.
The paper does not report if one of these mechanisms was actually adopted by the hospital.
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Chapter 19
Technical Action Research

Technical action research (TAR) is the use of an experimental artifact to help a client
and to learn about its effects in practice. The artifact is experimental, which means
that it is still under development and has not yet been transferred to the original
problem context. A TAR study is a way to validate the artifact in the field. It is the
last stage in the process of scaling up from the conditions of the laboratory to the
unprotected conditions of practice:

� For example, a researcher may have developed a new effort estimation technique and is now ready
to test it in the field. She teaches it to project managers, who then use it in their next project. The
researcher observes what happens in order to answer knowledge questions about the technique.

If no project manager wants to use the technique, the researcher may use it him- or herself to
do effort estimations in real-world projects. In this case too, the researcher observes what happens
in order to answer knowledge questions about the technique.

TAR studies are single-case studies, because each individual use of the artifact
is studied as a case. The difference with observational case studies is that the
researcher intervenes in the case to see what happens. The difference with single-
case mechanism experiments is that the treatment is not merely applied to see what
happens but also to help the client. The combination of these two properties is what
makes TAR action research.2

The difference between TAR and other forms of action research is that TAR is
artifact driven. All other forms of action research are problem driven, because they
work with the client to solve a problem without the goal of testing a particular
artifact. In contrast, TAR is part of the validation of an experimental artifact.

In TAR, the researcher is playing three roles (Fig. 19.1):

• As a technical researcher, the researcher designs a treatment intended to solve a
class of problems. For example, the researcher designs a new effort estimation
technique.

• As an empirical researcher, the researcher answers some validation knowledge
questions about the treatment. For example, the researcher wants to know how
accurate the effort estimation technique is.

© Springer-Verlag Berlin Heidelberg 2014
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Fig. 19.1 The three-level structure of TAR

• As a helper, the researcher applies a client-specific version of the treatment
to help a client. For example, the researcher may adapt the effort estimation
technique to a client and use it to help the client estimate project effort.

The key to the methodology of TAR is identifying these three roles and keeping
them conceptually separate.

Figure 19.1 shows that we start with a design cycle in which we design treatments
for a problem. To validate a treatment, we need to answer empirical knowledge
questions, and for this we perform an empirical cycle. So far, this is not different
from other kinds of validation research. The distinguishing feature of TAR is that we
validate a treatment by using it to help a client, in a client’s engineering cycle. This
requires coordination between the activities done as a researcher and as a helper,
which we will discuss later.

After a client cycle is finished, the researcher answers the validation knowledge
questions. The answers may provide reasons to improve the artifact in a new
iteration through the design cycle, including additional technical action research
to validate the improved artifact.

The description of the research context and the research problem, and of the
design of the client treatment, should be documented in a TAR protocol. This
document includes the agreements made with the client about access to the client’s
organization, treatment, and confidentiality of data. Events during execution of the
treatment and details of data analysis should be documented in a separate report that
we will call a TAR log. In the rest of this chapter, we discuss how the checklist of
Appendix B is applied to TAR.
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Table 19.1 The checklist for the research context of a TAR project. Initial questions to position your
research, written from the point of view of the researcher preparing to do the research

1. Knowledge goal(s)

– What do you want to know about the treatment?

2. Improvement goal(s)?

– What is the goal of the treatment?

3. Current knowledge

– What is currently known about this kind of treatment?
– Available expert knowledge?
– Why is your research needed?
– Theoretical framework that you will use?

19.1 Context

Table 19.1 shows the checklist items for the research context of a TAR project.
The knowledge goal of a TAR project is to validate a treatment under conditions of
practice. The improvement goal served by the TAR project is therefore the goal of
the treatment to be designed. Current knowledge consists of the current version of
your design theory of the artifact, plus any prior knowledge about the components
that you have used in the design:

� Morali and Wieringa [6] designed a method for confidentiality risk assessment when outsourcing
data management to a service provider:

(1) The knowledge goal was to learn whether this method was usable and useful.
(2) The improvement goal of the method was to allow a company to assess and manage

confidentiality risks when data management has been outsourced, so that they can show to
their auditors that they are in control of their information assets.

(3) The method, called CRAC++, had only been used on a toy example, but it was related to
methods that computed quantitative risks that had been tested independently. Knowledge about
those methods was used to construct CRAC++.

� Engelsman and Wieringa [2] describe two TAR studies in the development of a
goal-oriented enterprise architecture design method called ARMOR. In between, the
method was improved:

(1) The knowledge goal was to learn whether the method was usable and useful.
(2) The improvement goal was to achieve better traceability from business goals to

enterprise architecture and vice versa.
(3) Current knowledge about the method was prior knowledge about the enterprise

architecture method used (ArchiMate) and about the goal-oriented requirements
engineering methods used to define ARMOR.
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Table 19.2 The checklist for the research problem of a TAR study, written from the point of view of the
researcher preparing to do the research

4. Conceptual framework

– Conceptual structures? Architectural structures?
– Validity of the conceptual framework? Clarity of definitions, unambiguous applica-

tion?

5. Knowledge questions

– Open (exploratory) or closed (hypothesis-testing) questions?
– Effect, satisfaction, trade-off or sensitivity questions?
– Descriptive or explanatory questions?

6. Population

– Population predicate? What is the architecture of the elements of the population?
In which ways are all population elements similar to each other, and dissimilar to
other elements?

19.2 Research Problem

Table 19.2 lists the checklist questions for the research problem of TAR, written
from the point of view of a researcher preparing for the research. Each treatment
has a conceptual framework that is developed when the artifact is designed. As
we saw in Chaps. 5 (Implementation Evaluation and Problem Investigation) and 7
(Treatment Validation), the conceptual framework of an artifact is used in the design
theory of the artifact, and it extends the conceptual framework of the problem.

The knowledge questions are validation questions. There are two generic valida-
tion knowledge questions:

• What effects are produced by the interaction between artifact and context?
• Do the effects satisfy requirements?

It is convenient for the client to distinguish usability questions from utility questions.
Usability questions ask whether these effects satisfy usability requirements such
as understandability, ease of use, and ease of learning. Utility questions take us
beyond the requirements to stakeholder goals. Can the users use the artifact to
achieve stakeholder goals? The questions can be open or closed and descriptive
or explanatory.

The population of interest is the set of artifact variants and contexts of use about
which you want to generalize. To assess the scope of usability and utility of a
method, you need to do a series of TAR projects, and you need to understand by
which mechanism effects are produced by the artifact. The generalization that you
are after is a claim about which variants of the artifact are effective in which kinds
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of context, and the justification for such a generalization refers to the mechanisms
by which the artifact produces effects in a context:

� (4) The CRAC++ method [6] defines a conceptual framework for an outsourcing architecture in
which an organization, called the outsourcing client, has outsourced data management tasks to
an external party, called the outsourcing provider. These are problem concepts. The conceptual
framework of CRAC++ contains standard risk assessment concepts such as threat agent,
asset, and vulnerability and some nonstandard concepts like ease of access and protection
level.

(5) The knowledge questions were:

Q1 Is the method easy to use?
Q2 Does it deliver the same results when used by different persons?
Q3 Does it contribute to the client’s understanding of confidentiality risks on an outsourcing

relation?

Q3 is relevant because it is the goal of the method to improve understanding of confidentiality
risks. Q1 and Q2 are usability questions, and Q3 is a utility question.

(6) The population for which the method is intended is any company that has outsourced some of
its data management and is subject to external auditing.

� (4) The ARMOR method [2] assumes a problem context in which the concept of an enterprise
architecture is defined. The ARMOR method itself extends the conceptual model of the Archi-
Mate method with concepts from goal-oriented requirements engineering, such as stakeholder,
soft goal and hard goal, and concern [3].

(5) The knowledge questions in the first TAR project were about usability:

– What ARMOR constructs are used in practice?
– For which purpose are they used?
– Is this the intended use?

The second TAR project had two questions:

– Are the concepts in the redesigned ARMOR method understandable by architects?
– Does the method help in tracing business goals to enterprise architecture?

This is a usability question and a utility question, respectively.
(6) The intended population consists of all companies with a mature enterprise architecture

department who aim to keep their enterprise architecture closely aligned with their business
goals.

19.3 Research Design and Validation

The design of TAR studies requires decisions about client selection, sampling,
treatment, and measurement. It also requires alignment of these decisions with the
planned inferences from the data. The checklists for inference design are given in
Sect. 19.4, but we illustrate their application to research design here.
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Table 19.3 Checklist for the object of study of TAR, written from the point of view of the researcher
preparing to do the research

7.1 Acquisition of Objects of Study (Artifact � Client)

– How do you acquire a client? Which architecture must it have? How do you know
it has this architecture?

– How do you customize the artifact to the client?
– Validity of OoS

- Inference support. Which inferences would be valid with respect to this
design? See checklists for validity of descriptive statistics, abductive and
analogic inferences.

- Repeatability. Could other researchers use your report to construct or
select a similar OoS?

- Ethics. Are people informed that they will be studied, and do they consent
to this? Are they free to stop at any time without giving reasons, and do
they know this?

19.3.1 Client Selection

In TAR, the object of study is a client treated with an experimental artifact.
Table 19.3 lists the checklist questions for acquiring a client and customizing
the artifact to the client. To acquire an organization where you can apply an
experimental artifact, you need to build up mutual trust. Acquiring the trust of a
company may require a period of a few months to a few years. The best strategy is
therefore to build up a network of possible client companies over a period of years,
starting before you are ready to test a method in practice. This also helps you to stay
on course with respect to problem relevance [10].

Ways to build up such a network are visits to matchmaking events where
researchers and companies meet, visits to practitioners’ conferences, membership
of professional associations, and asking for referrals to related companies in a
snowballing procedure. Student internships are also a good starting point for long-
term relationships. You need a match in personality as well as in business goals.
Since you need to work with the client company closely, you need a personal
relationship with at least a gatekeeper who can provide you access to the relevant
parts of the company. The client company will not be primarily interested in your
research goal, but they should have a problem to solve for which you can use
your method, and they should be convinced that this will help them. For the client
company, this is a kind of free consultancy project, but they do take a risk by
committing human resources to the TAR project that could have been used for other
purposes.

Table 19.7 gives the checklist for descriptive inference. You should consider if
you can get the data for relevant descriptive statistics and whether chance models
for the variables have been defined about which you want to collect statistics.
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Causal inferences cannot be supported by a TAR study, because you cannot
observe the alternative world in which the treatment was not applied to the client.

To asses support for architectural inference, consider the following questions
(Table 19.8):

• Analysis. Can you collect enough information about the architecture of the client
organization to be able to analyze relevant mechanisms? What components of the
client organization will interact with the application of the artifact. Will you get
access to these components?

• Variation. How close must the client organization match the components men-
tioned in the problem architecture? Must all elements of the problem architecture
be present in the client organization? Or do you want to test the robustness of the
artifact under variation of real-world contexts?

• Abstraction. The problem architecture specified in the conceptual problem
framework of the artifact may abstract away potentially relevant structures in
a client company. Is this important? Do you want to test the robustness of the
artifact against possible influences of components not mentioned in the problem
architecture?

To support rational explanations, the following considerations are relevant when
acquiring a client:

• Goals. Can you get information about the true goals of actors?
• Motivation. Even if you can get information about goals, would you be able to

relate actions to goals? Would actors be open about their motivations?

The checklist for analogic inference in TAR studies (Table 19.9) gives us the
following:

• Population predicate. To which extent do the client organization and the artifact
prototype satisfy the population predicate? In which way are the client orga-
nization and the customized artifact similar to other organizations and artifact
implementations in the population? In which way are they dissimilar?

• Ambiguity. Could the client organization and artifact prototype be viewed as
instances of other population predicates too? Could you actually be generalizing
about the artifact used by the researcher instead of about the artifact? What could
be the target of analogic generalization?

Related to the last point, repeatability is an issue. You have built up a trust
relationship with the client company, and this means that you cannot be simply
replaced by any other researcher to do the project. Repeatability is conditional on
trust. But we can still ask whether any other researcher with a similar level of trust
with a client company from the same population should be able to do a similar TAR
project with them.

Finally, ethics dictate that the people participating in the TAR project are aware
that they participate in a research project and agreed to do so. They should know
they are free to stop at any time without giving reasons:
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� (7.1) The CRAC++ method was applied in a TAR project at a manufacturing company with the
required outsourcing architecture [6]. The company was part of the advisory board of the research
project in which CRAC++ and other risk assessment methods were developed, so that it had come
to know the researchers over a period of time. This allowed us to build up a trust relationship by
which we were reasonably aware of the goals and motivations of the important stakeholders in the
client organization even before the client cycle started. The company has an unknown number of
other processes and components that we assumed would not influence the use of the CRAC++
method.

The CRAC++ method needed a minor adaptation to the client company. CRAC++ requires the
helper to estimate frequencies and impact of successful attacks on the outsourcing architecture,
and we adapted the scales to the kind of data we could acquire from the client, and we developed
a lightweight tool to manage the large amount of data collected.

Generalizability is an issue. Because it was the researcher herself who applied the method,
we could not rule out the possibility that we were studying an instance of CRAC++ as used by its
developer rather than an instance of CRAC++.

� (7.1) The ARMOR research project was performed by a helper who studied for a PhD part-time.
The TAR project in which ARMOR was used in a client company, was done with a client that the
helper had known for many years. The researcher had access to the relevant components and
processes in the client organization and could ascertain that the client organization and the use of
ARMOR satisfied the population predicate.

ARMOR was not adapted to the client.
The method was used by others, so there was no threat that we were studying ARMOR as

used by its developer. However, because the users know that the method was new, there are still
threats to generalizability. We may have been studying ARMOR when it was brand new. We assess
the severity of these threats when we discuss generalizations about the treatment.

19.3.2 Sampling

TAR is case-based research, so we have to decide on an analytical induction strategy.
However, it is not possible to select disconfirming cases, which is done in analytical
induction about observational case studies. It would not be ethical to select a client
company in the expectation that the client cycle will result in failure. Failures are a
great source of insight in the functioning of artifacts [7], but we cannot intentionally
generate failures in TAR studies. Instead of true analytical induction, in TAR we
perform improvement cycles. After each client cycle, the artifact may be improved,
and each next client is usually selected to show successful use of the updated artifact.
Table 19.4 gives the checklist for sampling in TAR.

The checklist for the validity of abductive inference (Table 19.8) gives us the
following questions:

• Sampling influence. Could the selection mechanism influence the client organi-
zations? Could there be a regression effect?
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Table 19.4 Checklist for the sampling strategy of TAR, written from the point of view of the researcher
preparing to do the research

7.2 Construction of a sample of (Artifact � Client) cases

– What is the analytical induction strategy? Confirming cases, extreme cases?
– Validity of sampling procedure

- Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of statistical,
abductive and analogic inferences.

- Repeatability. Can the sampling procedure be replicated by other
researchers?

- Ethics. No new issues.

Being selected for a TAR project may affect the client organization so that the
researcher may observe phenomena that would not have occurred when the client
would not be studied. And if you work an extreme case, such as a very large or
very small organization, you must consider in your generalization that most other
organizations will be less extreme in size.

For analogic inference, the following question is relevant (Table 19.9):

• Representative sampling, case-based research. In what way will the selected
sample of clients and customized artifacts be representative of the population?

When we search for a client to help with the artifact, this question has a heuristic
function because it suggests that we should find a client that will provide us useful
information for generalization. After a series of TAR studies, the question can be
interpreted empirically: What can we learn from a series of TAR studies about the
class of clients where our artifact can be used successfully?

� (7.2) In the CRAC++ project, two client cycles were performed with two different client companies.
Both projects were successful, but an important shortcomings of the method observed in the first
client cycle was the lack of tool support. This was repaired in a quick-and-dirty way by creating
some spreadsheet structures. This saved the researcher some time in the second client cycle, but
it did not change the effects of using the method to help a client.

The clients were large manufacturing companies that have outsourced the management of
some of their ERP systems. The organizations were too large to be influenced in any way by being
selected as a client for our TAR project. This is tentatively the population of clients for which the
CRAC++ method would be useful.

� (7.2) The ARMOR method too was tested in two client cycles. The first cycle revealed which parts
of ARMOR were hard to use. This leads to an update of ARMOR, which was then used in the
second cycle.

The clients were semigovernment organizations with a mature enterprise architecture, so this
is tentatively the class of clients to which we can generalize our findings. One organization was
large (handling all welfare payments in the Netherlands) and the other relatively small (handling
the administration of water supply bills in one province). This suggests that we can generalize
independently of the size of the organization.
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19.3.3 Treatment Design

In TAR, there are three treatments, corresponding to the roles that the researcher
plays. As we move from one role to another, there is a reversal of what is treated by
what:

• In the client cycle, the client is treated with an experimental artifact.
• In the empirical research cycle, an experimental artifact is tested by treating it

with a real-world context.
• The researcher and client agree on a treatment plan in which, from one point

of view, the client is treated by the artifact and, from another point of view, the
artifact is treated to the client context.

We have observed this ambiguity earlier when we discussed treatments in single-
case mechanism experiments (p. 256).

Figure 19.2 shows in detail how the empirical cycle and the client cycle interact.
Before acquiring a client, you determine your conceptual framework, formulate the
knowledge questions, and state what the population of interest is. Next, you acquire
a client organization and do a client cycle as follows:

• When acquiring a client organization, you will discuss with potential clients what
problem they want to solve and which business goals they want to achieve. This
is the problem investigation task in the client cycle. In the empirical research
cycle, it is part of research design, and it includes customizing the artifact to the
client.

• Once you have acquired a client, you will agree a treatment plan with them. You
will specify requirements on the treatment, show that this would contribute to
their goals, and agree on a plan. In the empirical cycle, this is still part of research
design.

• The client treatment must be validated with the client in order to achieve a mutual
agreement that this is what you will do to help them achieve their goals. At the
same time, in the empirical cycle, you validate that this research design will help
you to answer your knowledge questions.

• Next, you execute the client treatment. This is part of research execution in the
empirical cycle.

• Finally, you evaluate the outcome with the client. This is the last task in the client
cycle, and it is still part of research execution in the empirical cycle.

After the client cycle is finished, you analyze the data as part of the empirical cycle.
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Problem inves�ga�on
Stakeholders? Goals?
Problema�c phenomena? Causes? Effects?

Client treatment design
Specify requirements!
Requirements contribute to goals?
Agree treatment plan with client!

Treatment valida�on
Will effects sa�sfy requirements?

Implementa�on
Execute the treatment!

Implementa�on evalua�on
Phenomena? Effects?
Contribu�on of effects to goals?

Research problem analysis
Conceptual framework of (Context X Ar�fact)
Research ques�ons: Effects? Sa�sfac�on?
Popula�on is set of (Context X Ar�fact)

Research & inference design
Acquire client organiza�on and
customize ar�fact!

Valida�on of research & inference design
Will this answer the research ques�ons?

Research execu�on
Execute the research design!

Data analysis
Descrip�ons
Explana�ons
Generaliza�ons
Answers to knowledge ques�ons

Empirical researcher’s empirical cycle Helper’s client engineering cycle

Coordinate

Evaluate the outcome!

Agree treatment plan with client!
Design the measurements!
Design the inferences!

Fig. 19.2 Detailed list of tasks in TAR. Exclamation marks indicate things to do, question marks
indicate questions to answer. Coordination with activities in the client cycle starts as soon as a client is
acquired and the artifact customized and finishes when the client cycle is evaluated

Switching back to the empirical research cycle, we are currently concerned with
the design and validation of the treatment to be applied to the client. Table 19.5
lists the checklist questions for the treatment design and validation in the empirical
cycle. Treatment design in TAR is customizing the still-experimental treatment to
the client, and this is the first question of this part of the checklist. You may have
to make decisions about treatment instruments and treatment schedule, which you
need to agree with the client.

To assess support for abductive inference, the checklist for causal inference is
relevant, not because we want to show the presence of causality, but because we
want to assess which causal influences can be assumed to be absent. The relevant
questions ask you to check whether or not some capabilities and mechanisms that
could influence the results were absent:
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Table 19.5 Checklist for treatment design in TAR, written from the point of view of the researcher
preparing to do the research

8. Treatment design

– How will the treatment be customized to the client?
– Which treatment instruments will be used? Instruction sheets, videos, lessons,

software, computers, actuators, rooms, etc.
– How are treatments allocated to OoS’s?

* Are treatments scaled up in successive cases?

– What is the treatment schedule?
– Validity of treatment design:

* Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of statistical,
abductive and analogic inferences.

* Repeatability. Is the specification of the treatment and the allocation to
OoS’s clear enough so that others could repeat it?

* Ethics. Is no harm done, and is everyone treated fairly? Will they be informed
about the treatment before or after the study?

• Treatment control. What other factors than the treatment could influence the
outcome of the client cycle? You intervene as a helper in an organization. Possible
influences on the outcome are the treatment allocation mechanism, the client-
consulting setup, your expectations and expectations of organizational actors, the
novelty of the client treatment, compensation by the helper for the willingness
of actors to work with you, and rivalry or demoralization among organizational
actors.

• Treatment instrument validity. Will the treatment instruments have the effect
on the client organization that you claim they have? Will they understand your
instructions, will they use tools properly?

Since you act as a helper for a client, your control of treatment conditions is probably
low, which implies that architectural explanations of outcomes have many threats
to their internal validity. On the other hand, this increases support for the external
validity of analogic inference to field conditions. For this, the following questions
are relevant (Table 19.9):

• Treatment similarity. Is the customized treatment plan similar to other treatments
in the real-world population? Different clients may require different customiza-
tions.

• Compliance. Will the customized treatment plan that you agreed on be imple-
mented as specified?



www.manaraa.com

19.3 Research Design and Validation 281

• Treatment control. What other factors than the treatment could influence the
client? This is the same question as mentioned above, and the question is relevant
here because you have to be aware what you can actually generalize about, the
treatment or the treatment plus other factors.

In addition to support for inferences, treatment validity includes repeatability and
ethics. The TAR protocol must specify the client treatment explicitly, so that other
researchers with the same level of trust could repeat the process with similar clients.

Since people are involved, ethical considerations apply. People must be treated
fairly, and no harm must be done. If deception is used, for example, by withholding
some information from the subjects, this must not be unfair or harmful either. In a
debriefing after the project, for example, as part of the client evaluation, the subjects
must be informed of any deception that took place:

� (8) In the CRAC++ projects, the client problem was this: These companies had to show to
external auditors that they were in control of the information assets [6]. However, some of the data
was managed by an outsourcing provider, so some employees in the outsourcing provider had
permission to access confidential data of the client company. In addition, some of the confidential
data of the client company was actually stored on servers located in the premises of the outsourcing
provider. Some of these servers were owned by the client company; others were owned by the
outsourcing provider. The outsourcing provider would not allow the client’s auditors to audit the
provider’s IT architecture, because this would violate the provider’s confidentiality requirements.

The researcher agreed with the client company to do a risk assessment in two calendar weeks,
using documents about the architecture of the systems managed by the outsourcing provider. She
acquired permission to interview an enterprise architect once to ask clarifications about these
documents and agreed on a limited number of appointments with the chief security officer to clarify
points regarding sensitivity of data and risk of data loss.

The researcher had no control over conditions in the company during the assessment. She
applied the same risk assessment twice in different clients, which increases support for external
validity.

A debriefing was planned with the chief security officer in which the results would be reported
and the advice to the company would be explained. This debriefing would be part of the client
evaluation.

� (8) In the ARMOR projects, the client companies had the problem that their budgets were shrinking.
Their goal was to get better control of IT expenses by improving the alignment of their enterprise
architecture with business objectives. Both clients were (semi)government organizations.

The first client was a government organization who wanted to redesign their enterprise
architecture due to changes in the law. These changes had been translated into changed business
goals of the client. The researcher taught the ARMOR method to enterprise architects of the client
company, who then used it to redesign their enterprise architecture in agreement with the changed
business goals. The researcher had no control over what happened when the architects used
ARMOR. This made this application realistic.

In the second project, the researcher used an updated version of ARMOR, called Light
ARMOR, to model the existing enterprise architecture of the client and then verified this
architecture on understandability and utility with the client.
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19.3.4 Measurement Design

Table 19.6 lists the checklist questions for measurement design. As usual, you need
a conceptual framework that defines variables and their scales. This may already
have been defined in the technical researcher’s design cycle, when the artifact was
designed. Restricting yourself to a limited set of measured variables is important,
because there is an infinite number of aspects that you could measure in a TAR
study, and you should restrict yourself to those aspects that are relevant for your
design theory of the artifact.

Since the researcher plays an active role in the TAR study, it is important to record
any treatment decisions that you make as well as decisions about how to interpret
and respond to events. Would an impartial observer who does not know you make
the same observations? What would a journalist who follows you write?

Table 19.6 Checklist for measurement in TAR, written from the point of view of the researcher
preparing to do the research

9. Measurement design

– Variables and constructs to be measured? Scales, chance models.
– Data sources? People (e.g. software engineers, maintainers, users, project

managers, politically responsible persons, etc.), primary data (e.g. source code,
log files, bug tracking data, version management data, email logs), primary
documents (e.g. project reports, meeting minutes, organization charts, mission
statements), etc.

– Measurement instruments? Interview protocols, questionnaires, video recorders,
sound recorders, clocks, sensors, database queries, log analyzers, etc.

– What is the measurement schedule? Pretests, posttests? Cross-sectional or
longitudinal?

– How will measured data be stored and managed? Provenance, availability to other
researchers?

– Validity of measurement specification:

* Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of abductive
and analogic inferences.

* Repeatability. Is the measurement specification clear enough so that others
could repeat it?

* Ethics. Which company data must be kept confidential? How is privacy of
persons respected?
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The client architecture can be used to indicate what the data sources are: people,
primary documents, and primary data. One of the people who provides data is you.
You should note in your diary any event that influences the measured variables and
that may influence the outcome of the project. Try to find data that conflicts with
your claim, before other people present you with such data. Is the beneficial effect
of your consulting perhaps due to your own competence or to the competence of the
people you work with? Is the client’s problem solved despite your effort rather than
thanks to your effort? Do they have the problem that you thought they have, or is
the real problem different?

You must also acquire or construct measurement instruments, such as interview
protocols, questionnaires, video recorders, sound recorders, clocks, sensors, data-
base queries, log analyzers, etc. These may have to be validated before use.

You need to agree on a measurement schedule and set up a data management
discipline so you can maintain traceability (provenance) of data.

To assess validity of measurement procedures, the checklists for the validity of
causal inference ask this (Table 19.8):

• Measurement influence. Will measurement influence the client?

As a helper, you are far from invisible. You are intervening in the client organization.
As a researcher, you are also taking measurements; it may be hard for stakeholders
to distinguish measurement taking from intervening. This may or may not influence
the accuracy of the measurements. Stakeholders interested in a positive outcome of
the consulting may find it important to give you accurate information about the state
of the consulting process.

To facilitate generalization to similar cases by analogic inference, the following
questions are relevant (Table 19.9):

• Construct validity. Are the definitions of constructs to be measured valid? Clarity
of definitions, unambiguous application, and avoidance of mono-operation and
mono-method bias?

• Measurement instrument validity. Do the measurement instruments measure
what you claim that they measure? If you maintain a diary, are you impartial
in recording the events of the day? Do you have the energy, at the end of each
day, to keep a diary?

• Construct levels. Will the measured range of values be representative of the
population range of values? Your client organization may be an extremely
difficult or an extremely easy one to help.

A further validity requirement is that using your measurement specification, other
researchers should be able to repeat the same kind of measurements in similar
organizations.
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Finally, you will have to establish rules for confidentiality of client data and for
respecting privacy of actors:

� In the CRAC++ projects, primary documents were consulted, and an enterprise architect inter-
viewed, to collect data about the outsourcing architecture. The researcher kept a diary too [6]. For
one of the projects, all of this data could be published after anonymization. Data from the other
project had to remain confidential.

Objectivity of the risk assessment (asked about in knowledge question Q2) was operationalized
by counting the number of concepts in CRAC++ that needed subjective interpretation to be applied
and comparing this with a similar count in alternative methods.

The evaluation task of the client cycle was done by interviewing the chief security officer. The
interview was not only by about how (dis)satisfied the CSO was but also how they used the results.
This reduced the threat of socially desirable answers.

� In the first ARMOR project, the researcher visited the client company every 2 weeks to observe how
ARMOR was used, give feedback on the work products, and answer any questions. The reliability
of the evaluation of the client cycle was increased because the enterprise architect was relatively
high because the client was paying for this consultancy, which presumably reduces the chance of
socially desirable answers.

In the second project, data about the current enterprise architecture was collected, and an
enterprise architect was interviewed twice, once before the project and once after the conclusion
of the project. In both projects, the enterprise architectures were confidential.

19.4 Inference Design and Validation

Inferences from TAR studies must be planned as carefully as inferences in other
studies and must match your research design. Inference from TAR studies is
case based and consists of description, explanation, and analogic generalization.
Examples of validity concerns during research design have been given above.
Examples of the inferences themselves are given later, in the section on data
analysis. Here we briefly review the relevant parts of the checklist.

The checklist for descriptive inference is shown in Table 19.7. Descriptive
inference in TAR studies is summarizing the large amount of data that you collected
from primary data and primary documents, including all work products produced
when applying the experimental artifact. Your diary too will contain a wealth of
information about events that needs to be summarized. To avoid adding information
in your descriptions that is not contained in the data, you may want to ask other
researchers to summarize and code the data. You may also want to ask other
researchers to check your interpretations in a privately organized blind peer review
process.
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Table 19.7 Checklist for descriptive inference design, written from the point of view of the researcher
preparing to do the research

10.1 Descriptive inference design

– How are words and images to be interpreted? (Content analysis, conversation
analysis, discourse analysis, analysis software, etc.)

– What descriptive summaries of data are planned? Illustrative data, graphical
summaries, descriptive statistics, etc.

– Validity of description design

* Support for data preparation.

- Will the prepared data represent the same phenomena as the
unprepared data?

- If data may be removed, would this be defensible beyond reason-
able doubt?

- Would your scientific opponents produce the same descriptions
from the data?

* Support for data interpretation.

- Will the interpretations that you produce be facts in your conceptual
research framework? Would your scientific peers produce the
same interpretations?

- Will the interpretations that you produce be facts in the conceptual
framework of the subjects? Would subjects accept them as facts?

* Support for descriptive statistics.

- Is the chance model of the variables of interest defined in terms of
the population elements?

* Repeatability: Will the analysis repeatable by others?
* Ethics: No new issues.

Table 19.8 gives the checklist for abductive inference. Explanations of outcomes
in a TAR study should be architectural. Your expectation is that the artifact is the
mechanism by which the helper will produce a desired effect in the client context.
The goal of the study is to find out if this really happens under uncontrolled and
possibly disturbing conditions of practice.

Table 19.9 gives the checklist for analogic inference design. Other potential client
organizations should have a similar architecture, in other words similar components
with similar capabilities and interactions, as the study client organizations. And
other customizations of the treatment, of other clients, should still be similar enough
to act as target of generalization by analogy. Our generalization will be stronger if
it is based on a series of TAR studies with different clients (analytical induction
without disconfirming cases) than if it is based on a single TAR study (analytical
generalization).
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Table 19.8 Checklist for abductive inference design in TAR, written from the point of view of the
researcher preparing to do the research

10.3 Abductive inference design

– What possible explanations can you foresee? What data do you need to give those
explanations? What theoretical framework?

– Internal validity

* Causal inference

- Sampling influence. Could the selection mechanism influence the client
organizations? Could there be a regression effect?

- Treatment control. What other factors than the treatment could influence
the outcome of the client cycle? The treatment allocation mechanism, the
experimental setup, the experimenters and their expectations, the novelty
of the treatment, compensation by the researcher, rivalry or demoralization
about the allocation?

- Treatment instrument validity. Will the treatment instruments have the
effect on the client that you claim they have?

- Measurement influence. Will measurement influence the client?

* Architectural inference

- Analysis: The analysis of the architecture may not support its conclusions
with mathematical certainty. Components fully specified? Interactions fully
specified?

- Variation: Do the real-world case components match the architectural
components? Do they have the same capabilities? Are all architectural
components present in the real-world case?

- Abstraction: Does the architectural model used for explanation omit
relevant elements of real-world cases? Are the mechanisms in the archi-
tectural model interfered with by other mechanisms, absent from the model
but present in the real world case?

* Rational inference

- Goals. An actor may not have the goals assumed by an explanation. Can
you get information about the true goals of actors?

- Motivation. A goal may not motivate an actor as much as assumed by an
explanation. Can you get information about the true motivations of actors?
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Table 19.9 Checklist for analogic inference design in TAR, written from the point of view of the
researcher preparing to do the research

10.4 Analogic inference design

– What is the intended scope of your generalization?
– External validity

* Object of Study similarity.

- Population predicate. To which extent does the client organization
and artifact prototype satisfy the population predicate? In which way
are they similar to the population elements? In which way are they
dissimilar?

- Ambiguity. Could the client organization and artifact prototype be
viewed as instances of other population predicates too? What could
be the target of analogic generalization?

* Representative sampling, case-based research: In what way will the
selected sample of clients and customized artifacts be representative of
the population?

* Treatment.

- Treatment similarity. Is the customized treatment plan similar to
other treatments in the real-world population?

- Compliance. Will the customized treatment plan that you agreed on
be implemented as specified?

- Treatment control. What other factors than the treatment could influ-
ence the client? Could the implemented treatment be interpreted as
another treatment?

* Measurement.

- Construct validity. Are the definitions of constructs to be measured
valid? Clarity of definitions, unambiguous application, avoidance of
mono-operation and mono-method bias?

- Measurement instrument validity. Do the measurement instruments
measure what you claim that they measure?

- Construct levels. Will the measured range of values be representa-
tive of the population range of values?
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Table 19.10 Checklist for execution of the client treatment in TAR, written from the point of view of the
researcher preparing to write a report

11. What happened?

– What has happened when the client was selected? Does the client have the
architecture that was planned during research design? Did any unexpected
events happen in the client during the study? Personnel changes, organizational
changes, etc.

– What has happened during sampling? Did you do more than one TAR project?
In what sequence did you do the client cycles? Was the treatment changed
between cycles?

– What has happened when the client treatment was applied? Mistakes, unex-
pected events?

– What has happened during measurement? Data sources actually used,
response rates?

19.5 Research Execution

We now switch perspective from designing a TAR project to executing it and
reporting about it. Table 19.10 lists the checklist questions for executing the client
cycle. This cycle is usually confidential as it is usually a consultancy project. You
can probably not report about it, but it is important to keep a record in the project
log, which you can use in data analysis. Typical elements of the TAR log are the
intermediary work produces of using the artifact, interview records, and your diary
containing notes about expected and unexpected events and about decisions that you
made about treatment and interpretation.

19.6 Data Analysis

We now apply the inferences designed earlier. Table 19.11 lists the checklist
questions for data analysis. There is no part about statistical inference over a sample
of TAR case properties, because we are studying single cases, not sample properties.
Events during the client cycle, and data actually collected, should be analyzed with
the validity questions in mind. The entire validity discussion could be collected in a
separate section of a report.

19.6.1 Descriptions

� (12) The CRAC++ report [6] contains the key work products of one of the client cases. Since these
are work products, they have been verified with the client stakeholders. The major observation
is that according to the chief security officers of the clients, the CRAC++ assessment produced
more insight into the confidentiality risk position and trade-offs than their current, checklist-based
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Table 19.11 Checklist for data analysis in TAR, written from the point of view of the researcher
preparing to write a report

12. Descriptions

– Data preparations applied? Data transformations, missing values, removal of
outliers? Data management, data availability.

– Data interpretations? Coding procedures, interpretation methods?
– Descriptive statistics. Demographics, sample mean and variance? Graphics,

tables.
– Validity of the descriptions: See checklist for the validity of descriptive inference.

14. Explanations

– What explanations (causal, architectural, rational) exist for the observations?
– Internal validity: See checklist for the validity of abductive inference.

15. Generalizations

– Would the explanations be valid in similar cases or populations too?
– External validity: See checklist for the validity of analogic inference

16. Answers

– What are the answers to the knowledge questions? Summary of conclusions,
support for and limitations of conclusions.

method. We judged this not to be socially desirable statement, as the clients actually did use
the CRAC++ risk assessment to renegotiate their service level agreements with their outsourcing
provider. So we accept it as a fact.

� (12) The ARMOR report only contains the observations about how ARMOR constructs were
used [2]. The observations were about nonuse and even misuse of some constructs in the ARMOR
language. This could have been caused by our treatment, e.g., by a confusing instruction of the
enterprise architects who used the language. But the nonuse and misuse were consistent across
architects and across the two client cycles that we performed. So we accept this as a fact.

19.6.2 Explanations

� (14) The major observation in the CRAC++ project was that the CRAC++ assessment gave the
chief security officers more insight into the confidentiality risk position than their current, checklist-
based method. Our earlier discussion of the validity of our research design, together with the events
recorded in the researcher’s diary, provides support for the belief that the effects were produced by
CRAC++ and not by something else. We concluded from this that the CRAC++ method “worked”
in the two client cycles that we performed. In the two client cycles, the CRAC++ method was a
mechanism for increasing insight in confidentiality risks.
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� (14) In the ARMOR project, the nonuse and misuse of important language constructs were
explained by redundancies in their definitions, so that some concepts were perceived as super-
fluous and other concepts were confused, and by incompatibility with the way of working of the
enterprise architects, so that some definitions were not understood, creating even more confusion.

19.6.3 Analogic Generalizations

� (15) The two client organizations where CRAC++ was applied are manufacturing organizations,
which are very cost aware, have outsourced data management, and yet must comply with auditing
standards. The tentative generalization is therefore that similar effects will be obtained by CRAC++
in similar organizations.

� (15) The two clients where ARMOR was applied were a provincial government organization and
a semigovernment organization. The pressure for accountability is high in both organizations,
and so they are interested in maintaining alignment between business objectives and enterprise
architecture, which is what ARMOR supplies. Both organizations were also under pressure of
shrinking budgets. In both organizations, the enterprise architects that used ARMOR and that we
asked to read ARMOR models has at least 5 years of experience. The tentative generalization is
that in similar organizations, the use of ARMOR will produce similar effects.

19.6.4 Answers to Knowledge Questions

� (16) The first knowledge question in the CRAC++ project is:

Q1 Is the method was easy to use?

The researcher found the method not so easy to use without a more sophisticated tool, because
the method requires a lot of data to be maintained, structured, (re)organized, and graphically
presented. This gives a negative answer to Q1. The next question is:

Q2 Does it deliver the same results when used by different persons?

The measurements should provide less room for subjective estimates in CRAC++ than in the
current methods, suggesting a positive answer to Q2 about repeatability of the results. The third
question is:

Q3 Does it contribute to the client’s understanding of confidentiality risks on an outsourcing
relation?

As indicated earlier, the response of the clients also suggests a positive answer to Q3 about
contribution to understanding.

� (16) The knowledge questions in the first ARMOR project were about usability:

– What ARMOR constructs are used in practice?
– For which purpose are they used?
– Is this the intended use?
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The observations about nonuse and misuse provided the answers to these three questions. This
caused the researcher to simplify ARMOR and test this simplified version in the second client
project, which provided occasion to improve the method by simplifying it. This project had two
questions:

– Are the concepts in the redesigned ARMOR method understandable by architects?
– Does the method help tracing business goals to enterprise architecture?

The second TAR project provided a preliminary positive answer to the question whether Light
ARMOR would be useful to maintain traceability between business objectives and enterprise
architecture. The answer has weak support, because it was based on the opinion of one enterprise
architect.

19.7 Implications for Context

Table 19.12 lists the checklist questions to feed back your results into the research
context. The TAR project will have added to the knowledge about the method, and
this should be related to items 1 and 3, the knowledge goal and state of knowledge
when you started the project.

Relevance to the improvement goal is twofold: The TAR project may have
suggested improvement needs for the method, which relates back to item 2. In
addition, there may be lessons learned for other companies that may want to use
the method. This would be a possible contribution to practice:

� (17) The CRAC++ projects contributed to the goal of learning about the usability and utility of
CRAC++.

(18) The major improvement need found was that tool support would be required to make the
method usable. On the other hand, the client companies found the method useful but not to
the extent that they would invest in a tool to use this method on a regular basis.

� (17) The ARMOR projects added knowledge about usability of the method.

(18) This in turn suggested improvements to the method. However, these could only partially
be implemented because by the time the first project was finished, the method was
standardized and the standard would not be changed. However, training material was still
under development, and this has been adapted based on the results of this TAR project.

Table 19.12 Checklist for implications of TAR, written from the point of view of the researcher
preparing to write a report

17. Contribution to knowledge goal(s) Refer back to items 1 and 3.
18. Contribution to improvement goal(s)? Refer back to item 2.

– If there is no improvement goal: is there a potential contribution to practice?
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Notes

2Page 269, action research. Action research was initiated by Lewin in the 1940s as a method
to apply the results of social research to practice and learn from it [4, 5]. A very influential paper
by Susman and Evered [9] defined action research as the following cycle:

• Diagnosis
• Action planning
• Action taking
• Evaluating
• Specifying learning

This is roughly our client cycle followed by what we called data analysis.
Davison et al. [1] integrate different approaches to action research into what they call

canonical action research (CAR). They formulate five principles of CAR:

• There should be a client-researcher agreement.
• The process should be cyclical.
• Theory should be applied.
• The action of the researcher should change the client.
• The researcher learns through reflection.

TAR satisfies these principles too.
Sein et al. [8] define action design research, which, like other CAR methods, is problem

driven. It starts with a joint problem analysis with the client, performs a search for solutions,
implements and evaluates them, and then specifies lessons learned. TAR is described, motivated,
and compared with these other approaches in more detail elsewhere [11].
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Chapter 20
Statistical Difference-Making Experiments

In a statistical difference-making experiment, two or more experimental treat-
ments are compared on samples of population elements to see if they make a
difference, on the average, for a measured variable. More than two treatments
may be compared, and more than one outcome measure may be used. Different
treatments may be applied to different objects of study in parallel or to the same
object of study in sequence.

The logic of statistical inference in all these designs is the same. If two treatments
A and B are compared, the sample treated by A is viewed as a random sample from
the population treated by A, and the sample treated by B is viewed as a random
sample from the population treated by B . The question to be answered is whether
there is a difference between the average of a measured variable Y in the population
treated by A and the population treated by B .

There is a different kind of design, in which we do not ask whether a difference
between treatments has an effect on a measured variable, but whether a difference in
objects of study has an effect on a measured variable. The question to be answered
is whether there is a difference between the average of a measured variable in
population P treated by A and population Q treated by A. Such a difference could
exist if the elements of P and Q have different capabilities and limitations with
respect to the treatment:

� Several studies have investigated the effect on personality on pair programming [2, 11]. Program-
mers are coupled in pairs depending on their personality structure, and two groups of pairs are
formed, where, for example, pairs in one group have one member who is emotionally unstable and
the pairs in the other group do not have a member that is emotionally unstable. Measured variables
are duration of the programming task and correctness of the program. The knowledge question is
whether the averages of these variables in the two groups are different.

The role of statistical inference in all of these research designs is to establish if there
is a statistically discernable difference between the average of a measured variable
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in different populations. The designs differ in the way the populations are defined
and the samples are constructed. As explained in Chap. 13, there are two classes
of statistical inference: We can test a hypothesis about the difference in Y , or we
can estimate a confidence interval for the difference. If a statistically discernable
difference exists, we use abductive reasoning to explain this difference causally
in terms of the way the groups were constructed. For example, we can explain
it causally in terms of a difference in treatments or architecturally in terms of a
difference in capabilities of population elements.1

There are several checklists for the statistical difference-making experiments.
The checklist in this book includes the other ones but spends more attention on
architectural explanation and on generalization by analogy.2 Statistical difference-
making experiments require careful preparation. The experiment protocol contains
your description of the context, the statement of the research problem, and the
specification and validation of the research design. The experiment log contains a
documentation of events during the execution of the research and details of the data
analysis. In the rest of this chapter, we discuss how the checklist of Appendix B is
applied to statistical difference-making experiments.

20.1 Context

Table 20.1 shows the checklist for the research context. The knowledge goal may
be to evaluate existing treatments or to validate new, experimental treatments. This
may be curiosity driven, or there may be an improvement goal of a higher-level
engineering cycle. In any case, you have to summarize current knowledge to explain
and motivate the knowledge goal.

When you decided to do an empirical study, you probably already knew the
answers to these questions. But readers of your research report do not know the
answers, and so they must be provided with the answers at the beginning of the
report:

� Briand et al. [1] investigated the effect of using system sequence diagrams (SSDs) and system
operation contracts (SOCs) in the quality of unified modeling language (UML) domain models.
These two artifacts are recommended by Larman [7] in his textbook on UML and patterns:

(1) Their knowledge goal was to find out whether these artifacts improved modeling.
(2) There was no improvement goal, because this was not part of a higher-level engineering cycle.

The study can be classified as an evaluation. It investigates a current practice in teaching
UML, namely, using SSDs when producing domain models and extending the domain models
with SOCs. Results of this evaluation could be useful for software engineering education and
possibly for software engineering practice too.

(3) Not much was known about this particular question. There was no theory and at the time of
writing there was no body of empirical knowledge about the effect of using these techniques.
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Table 20.1 Checklist for the research context, written from the point of view of the researcher preparing
to do the research

Research context

1. Knowledge goal(s)

– What do you want to know? Is this part of an implementation evaluation, a
problem investigation, a survey of existing treatments, or a new technology
validation?

2. Improvement goal(s)

– If there is a higher-level engineering cycle, what is the goal of that cycle?
– If this is a curiosity-driven project, are there credible application scenarios for

the project results?

3. Current knowledge

– State of the knowledge in published scientific, technical, and professional
literature?

– Available expert knowledge?
– Why is your research needed? Do you want to add anything, e.g., confirm or

falsify something?
– Theoretical framework that you will use?

20.2 Research Problem

Table 20.2 lists the checklist questions for stating the research problem. The
conceptual framework of a statistical difference-making experiment must define
a statistical structure. It should define a chance model for random variables that
defines the meaning of each variable in the population and lists assumptions
about their distribution. The two other elements of chance models, measurement
procedures and sampling procedures, are defined later on. Chance models are
needed for the validity of descriptive and statistical inference.

Knowledge questions must be stated in terms of the conceptual framework. The
first formulation of the questions may not use fully operationalized constructs,
but before conducting the experiment, all constructs must be operationalized in
measurable indicators. This is subject to the requirements of construct validity.

Questions may be open or closed. In statistical difference-making experiments,
they are about a statistical model, such as a hypothesis about a population mean,
population variance, or some other property of the population distributions of
random variables. To answer an open question, you may want to estimate some
parameter of the distribution. A closed question has one or more statistical
hypotheses as possible answers, and the question is answered by testing these
hypotheses.

The conceptual framework must define the constructs to define a population.
Without a clear population concept, a sampling procedure cannot be defined,
and then no inference from the sample to a population is possible. As explained
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Table 20.2 Checklist for the research problem, written from the point of view of the researcher
preparing to do the research

Research problem

4. Conceptual framework

– Conceptual structures? Architectural structures, statistical structures?
– Chance models of random variables: semantics of variables?
– Validity of the conceptual framework? Clarity of definitions, unambiguous

application, avoidance of mono-operation and mono-method bias?

5. Knowledge questions

– Open (exploratory) or closed (hypothesis-testing) questions?
– Effect, satisfaction, trade-off, or sensitivity questions?
– Descriptive or explanatory questions?

6. Population

– Population predicate? What is the architecture of the elements of the popu-
lation? In which ways are all population elements similar to each other and
dissimilar to other elements?

– Chance models of random variables: assumptions about distributions of
variables?

in Chap. 11, sampling requires a sampling frame, which is a list of population
elements that can be selected for a sample. The population described by the frame
is the study population. If a further inference to the theoretical population is aimed
for, then this inference is analogic, and the study population must be representative
of the theoretical population:

� (4) The conceptual framework of the study by Briand et al. [1] was that of the UML, supplemented
by the SSD and SOC concepts as defined by Larman. They compared two methods: In the Unified
Process (UP), domain models are designed from use case scenarios. In the extension to the UP
defined by Larman, which we will refer to as UPC, SSDs are defined for the most complex use
case scenarios, the domain model is designed after SSDs have been designed, and the domain
model is extended with SOCs that specify how the domain model changes when an event arrives
that is defined in the SSDs.

The objects of study were students who perform system modeling tasks using one of these
methods. The researchers measured the quality of the model and the effort of modeling for each
student and then average this per sample. The quality of a model was operationalized by indicators
such as number of missing classes, number of useless classes, number of missing relationships,
etc. The effort of modeling was operationalized by the indicator time to complete domain model.

For the quality indicators, there is a mono-method construct validity threat because all
indicators were measured by grading the model. A different concept of model quality would
arise if it would be related somehow to properties of the system built from the model. For effort
there is a mono-operation bias: time is only one indicator of effort. Some students will be faster
than others anyway, whereas in the same period of time, two students could spend different
amounts of cognitive effort to solve a problem. We will see in measurement design that in addition
to measuring time, the researchers also asked the students for their perception of effort, thus
reducing mono-operation bias.
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(5) There were two knowledge questions. Since this is sample-based research, the questions were
asked about population averages, and we make this explicit here:

RQ1 Does the use of SSDs and SOCs improve the quality of the domain model, on the
average?

* The researchers formulated as null hypotheses for the quality and effort indicators that the
number of missing classes is the same for both methods, and they formulated directional
alternatives such that the number of missing classes is better for UPC than for UP.

RQ2 Does the use of SSDs and SOCs reduce the effort to design the domain model, on the
average?

* Here the null hypothesis was that the time to complete the domain model is the same for
both methods, and the alternative was that it is better for UPC than for UP.

(6) The theoretical populations were the set of all student projects using UP and the set of all student
projects using UPC.

20.3 Research Design and Validation

The design of statistical difference-making experiments requires decisions about
the acquisition of objects of study, sampling, treatment, and measurement. It also
requires alignment of these decisions with the planned inferences from the data.
The checklists for inference design are given in Sect. 20.4, but we illustrate their
application to research design here.

20.3.1 Object of Study

Table 20.3 shows the checklist for the object of study. The object of study in design
science is an artifact in context. In validation studies, the artifact is an experimental
prototype, and the context can be an artificial one in the laboratory or a natural one in
the field. In evaluation studies, both the artifact and its context exist in the field. Fully
randomized statistical difference-making field experiments in information systems
and software engineering are very expensive and hence very rare.

To support descriptive inference, the chance models of variables about which we
collect data must be defined (Table 20.7). The meaning of the variables in terms
of properties of the population elements should be defined, and assumptions about
their distribution over the population should be listed. Sampling and measurement
procedures will be defined later in research design.
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Table 20.3 Checklist for acquiring objects of study in statistical difference-making experiments, written
from the point of view of the researcher preparing to do the research

Object(s) of study

7.1 Acquisition of objects of study

– If OoSs are selected, how do you know that a selected entity is a population
element?

– If OoSs are constructed, how do you construct a population element?
– Validity of OoS

- Inference support. Which inferences would be valid with respect to this
design? See checklists for validity of descriptive statistics and abductive
and analogic inferences

- Repeatability. Could other researchers use your report to construct or
select a similar OoS?

- Ethics. Are people informed that they will be studied, and do they consent
to this? Are they free to stop at any time without giving reasons, and do
they know this?

To support validity of causal inference from the experimental data, the following
checklist question is relevant (Table 20.9):

• OoS dynamics. Could there be interaction among OoSs? Could there be historical
events, maturation, and dropout of OoSs?

Interaction, historical events, and maturation of objects of study may influence
the outcome of the experiment, which should then be added to any effects of the
treatment. Dropouts reduce the sample size, which affects the statistics and their
variance.

In addition to causal inference you may want to do architectural inference to
explain observed phenomena. This would be the case if you want to explain a
causal influence, or if you want to compare capabilities of different populations.
The following considerations are relevant for architectural inference:

– Analysis: Is the architecture of the objects of study specified in the population
predicate? What are the components of an object of study, and how do the
components interact? What are their capabilities? Do you know enough of the
architecture and capabilities of the objects of study to give an analytic explanation
afterward?

– Variation: How close should the objects of study match the population predicate?
Should all architectural components be present in an object of study? What is the
variation in capabilities?

– Abstraction: The objects of study that you actually acquire have many more
components than what is specified in the population predicate, and they may
have other capabilities in addition to the ones you are studying. Is this relevant
for architectural explanation?
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Variations of these consideration are also relevant for supporting analogic inference
(Table 20.10):

• Population predicate. Do all objects of study satisfy the population predicate? In
which way are they similar to other population elements? In which way are they
dissimilar? What populations can be the target of analogic generalization?

• Ambiguity. Will the OoS satisfy other population predicates too? If all objects of
study in a sample have multiple classifications, then it can be ambiguous which
population is the intended target of analogic generalization.

For the validity of an OoS, it is also necessary that acquiring them be repeatable
by other researchers. The specification of the way you acquire objects of study
should be sufficient for other researchers to replicate your research. Finally, ethical
constraints must be respected. For example, human subjects must only participate
after informed consent, and they should know that they are free to stop any time
without giving reasons:

� (7.1) The objects of study in the study by Briand et al. [1] are fourth-year students performing
a system modeling task. They have received programming courses earlier and will perform the
experiment as part of a full-term course on UML-based software modeling.

Depending on the research setup, students may or may not interact during the experiment.
There may also be historical events outside the control of the experimenter that influence the
experiment, such as a soccer game or late night party the previous night that left some subjects
sleepless and may cause other subjects to drop out of the experiment. This is not reported by the
authors, so we assume it did not happen.

There is no model of cognitive mechanisms that will be used in the experiment, and no
architectural inference will be done. The authors do assume that fourth-year bachelor computer
science students all over the world are similar in their responses to the experimental manipulations.

20.3.2 Sampling

In the ideal statistical difference-making experiment, sampling is random, so that all
extraneous variables are randomized. This gives an unbiased estimate of population
parameters. If full randomization is not possible, then extraneous variables that
could influence the measured variables must be blocked physically in the experiment
or blocked computationally in the statistical analysis.

Table 20.4 gives the checklist for sample design. You need to define a sampling
frame and decide on a selection strategy. In a simple random sampling strategy, we
randomly select elements from the sampling frame without replacement.

To assess support of the sampling procedure for statistical inference, you should
check the assumptions of the statistical inference procedures that you plan to use. At
least, sample size should be sufficient to discern the expected differences between
experimental groups. If sampling is done without replacement and the population
is small with respect to the sample, a correction factor should be applied to
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Table 20.4 Checklist for sampling in statistical difference-making experiments, written from the point
of view of the researcher preparing to do the research

7.2 Construction of a sample

– Sample-based research: What is the sampling frame and probability sampling
strategy? Random with or without replacement, stratified, cluster? What should
the size of the sample be?

– Validity of sampling procedure

- Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of statistical,
abductive, and analogic inferences

- Repeatability. Can the sampling procedure be replicated by other
researchers?

- Ethics. No new issues

statistical estimations. In Chap. 13, we listed the assumptions of confidence interval
estimation, but other procedures may have other assumptions. Some inference
procedures have a graceful degradation if some assumptions are violated a bit
but give meaningless results if other assumptions are violated. To assess the
robustness of the statistical inference procedure that you use, you should consult
the literature [14, 18] or, better still, a statistician.

To assess support for causal inference, the following question is relevant
(Table 20.9):

• Sampling influence. Could the selection mechanism influence the OoSs? Could
there be a regression effect?

Even in random sampling, being selected for an experimental treatment can change
the responses of the objects of study, which could be mistaken for a treatment effect.
And being selected nonrandomly surely biases the average of the outcome variables.
Also, if objects of study have been selected on an extremely good or bad score on a
pretest, it is likely that they will score less extreme on the next test. This is called a
regression effect, and it could be mistaken for a treatment effect.

Statistical inference reasons from a sample to the study population. To generalize
to the theoretical population by analogic inference, the following question is
relevant (Table 20.10):

• Representative sampling. Will the study population, described by the sampling
frame, be representative of the theoretical population?

Support for analogic generalization to the theoretical population increases when
population elements have a similar architecture and if this architecture explains the
property of the study population that we want to generalize:

� (7.2) In the study by Briand et al. [1], the experiment was done four times, and each time
the sampling frame was the list of computer science students enrolled in a fourth-year UML
course at Carleton University, Canada, doing domain modeling tasks in UP and in UPC. We
can conservatively take the theoretical population to be the set of all last year computer science
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bachelor students at Carleton University in any calendar year, doing domain modeling tasks. The
study population is probably representative of this theoretical population. There is less certainty
about representativeness of the study population for larger populations, such as the set of all
fourth-year computer science students worldwide doing domain modeling tasks, or for the different
population of professional software engineers doing domain modeling tasks.

There is no information how the subjects were selected from the sampling frame. If this is not
by (simple) random selection, then there might be some unknown systematic displacement (bias)
of population estimates.

20.3.3 Treatment Design

Table 20.5 gives the checklist for treatment design. Treatments always require
instruments, such as instruction sheets, lessons, help desks, background material,
etc. They must be specified before applied, and in statistical experiments they must
be allocated to sample elements. There is a large variation of allocation strategies,
classified as independent group design, dependent group design, and mixed designs.
The example illustrates one of the many possible allocation strategies. More
information can be found in the literature [5, 10, 13, 19].

To support inferences, the treatment should satisfy a number of requirements.
The core requirement for supporting statistical inference is this (Table 20.8):

• Treatment allocation. Are the treatments allocated randomly to sample elements?

If we select a sample randomly and allocate treatments A and B randomly to sample
elements, we end up with treatment groups A and B that can be viewed as random
samples selected from the population treated with A and the population treated
with B . The estimation of the difference between the population means will then
be without bias (systematic displacement).

Random allocation greatly simplifies causal inference. If treatments are allocated
randomly, the only remaining systematic difference between treatment groups is the
difference in treatments. If on the other hand allocation is not random, then there
is a systematic difference between the samples that would lead to a false estimate
of the difference between population means. This could be falsely interpreted as a
treatment effect. The literature on experiment designs provides guidelines on how
to reason about these nonrandom differences, and the example illustrates some of
this.

The checklist for causal inference design gives us two other questions about
treatments (Table 20.9):

• Treatment control. What other factors than the treatment could influence the
OoSs? The treatment allocation mechanism, the experimental setup, the experi-
menters and their expectations, the novelty of the treatment, compensation by the
researcher, and rivalry or demoralization about the allocation?

• Treatment instrument validity. Do the treatment instruments have the effect on
the OoS that you claim they have?
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Table 20.5 Checklist for treatment design in statistical difference-making experiments, written from the
point of view of the researcher preparing to do the research

8. Treatment design

– Which treatment(s) will be applied?
– Which treatment instruments will be used? Instruction sheets, videos, lessons,

software, computers, actuators, rooms, etc.
– How are treatments allocated to OoSs?

* Blocking, factorial designs, crossover designs? Between-subjects or within-
subject designs?

– What is the treatment schedule?
– Validity of treatment design

* Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of statistical,
abductive, and analogic inferences

* Repeatability. Is the specification of the treatment and the allocation to OoSs
clear enough so that others could repeat it?

* Ethics. Is no harm done, and is everyone treated fairly? Will they be informed
about the treatment before or after the study?

To assess support for analogic inference from a study population to some other
population, three questions about treatments are relevant (Table 20.10):

• Treatment similarity. Is the specified treatment in the experiment similar to
treatments in the population? For example, if you want to generalize to the real
world, is the specified treatment realistic?

• Compliance. Is the treatment implemented as specified?
• Treatment control. Should the factors that we could not control be viewed as

parts of the treatment that is being generalized about? Could the implemented
treatment be interpreted as another treatment?

Treatment application must be repeatable by other researchers. Finally, if the
objects of study contain people, ethics dictates that they must not be harmed by
the experiment. In the interest of the experiment, the experimenter may hide the
research goal or some other aspects of the experiment from experimental subjects.
In that case, the subjects must be informed after the experiment has finished:

� (8) In the study by Briand et al. [1], the treatments were the assignments to use the two methods
UP and UPC. Normal instructional material was used, but students in the fourth experiment
received more training in the UPC constructs SSD and SOC than students in the previous three
experiments. Results from the fourth experiment are therefore not fully comparable with those of
the first three.

Each experiment except the second consisted of four laboratory sessions of 3 h each, 1 week
apart. The second experiment had too many participants to be taught in one lab session, and
students were partitioned into two groups that were taught the same material but in two lab
sessions 1 week apart. The second experiment therefore lasted 8 weeks, while the other three
lasted 4 weeks. This increased interaction possibilities among the students between lab hours in
the second experiment. This was a potential influence on the experimental outcome in the second
experiment. Other potential influences were history, maturation, and dropout.
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SSD of system A SSD of system B

Domain model of
system A using UP+

Domain model of
system B using UP+

Domain model of
system A using UP

Domain model of
system A using UP+

Domain model of 
system B using UP

Domain model of
system B using UP

Domain model of
system A using UP

Domain model of
system B using UP+

Lab 2

Lab 3

Lab 4

321 4

Fig. 20.1 A crossover design for comparing the UP and UPC methods. Each lab is 3-h practicum in
which students must make system models. Lab 1 was spent on learning the relevant techniques. To
cancel out order effects, each system is modeled two times in lab 3, with the UP and UPC methods,
and two times in lab 4, with the UP and UPC methods, in all possible sequences. This defined four
experimental groups in total per experiment, identified by the labels of the arrows in the diagram

The measured variables are the six indicators for quality of domain model and the indicator for
effort, time to produce the model.

The simplest design to test if the difference between UP and UPC causes a difference in
these measured variables is to randomly allocate the treatments to experimental subjects and then
compare the average value of the measured variables in the UP group and UPC group. This mixes
the effect of student’s software engineering ability with possible effects of the method.

A better design is to have each student use both methods in sequence and measure the
measured variables each time, in a repeated measures design. This removes variance from
the measurement that is due to student variability but introduces the possibility that the second
modeling effort will deliver a better quality model anyway, because the system has been modeled
already. This is called a learning effect. At the same time, students could become tired or bored,
producing a worse model, which is called a fatigue effect.

To avoid this, the student sample was partitioned into two groups that applied the two methods
in opposite order. This would make order effects in the use of methods visible and allows the
researchers to average them out in each treatment sample.

To avoid the situation that students would model the same system twice, which would introduce
a learning effect again, two systems of comparable complexity were used. As a result, in each lab
the students can be given one out of two methods to use and one out of two systems to work on,
giving a total of four possible sequences in a crossover design, as shown in Fig. 20.1.

Treatment control was thus as high as one could get it in the classroom. One of the treatment
instruments as instruction in the SSDs and SOCs is used in UPC, and in the fourth experiment,
more time was spent on teaching these techniques than in the first three experiments, to be sure
that the students understood and could use these techniques.

Due to the limitations of classroom experimentation, similarity between the experimental
treatment and treatments applied in the real world is relatively low, as also acknowledged by the
authors.

20.3.4 Measurement Design

Table 20.6 lists the checklist for measurement design. By the time measurements
are designed, the researcher should finalize the operationalization of variables,
including the definition of scales and chance models. The objects of study are
the data sources. But the objects of study may have a complex architecture, and



www.manaraa.com

306 20 Statistical Difference-Making Experiments

Table 20.6 Checklist for measurement design in statistical difference-making experiments, written
from the point of view of the researcher preparing to do the research

9. Measurement design

– Variables and constructs to be measured? Scales, chance models
– Data sources? People (e.g., software engineers, maintainers, users, project man-

agers, politically responsible persons, etc.), primary data (e.g., source code, log
files, bug tracking data, version management data, email logs), primary documents
(e.g., project reports, meeting minutes, organization charts, mission statements),
etc.

– Measurement instruments? Interview protocols, questionnaires, video recorders,
sound recorders, clocks, sensors, database queries, log analyzers, etc.

– What is the measurement schedule? Pretests, posttests? Cross-sectional or
longitudinal?

– How will measured data be stored and managed? Provenance, availability to other
researchers?

– Validity of measurement specification

* Inference support. Which inferences would be valid with respect to this
design? See the applicable parts of the checklists for validity of abductive
and analogic inferences

* Repeatability. Is the measurement specification clear enough so that others
could repeat it?

* Ethics. Which company data must be kept confidential? How is privacy of
persons respected?

the researcher has to figure out where exactly the data is generated and which
instruments are needed to collect the data. In addition, measurements must be
scheduled, and the data must be stored, transformed, manipulated, and made
available, which requires setup of a data management system.

Statistical difference-making experiments are used to support causal inference,
and to assess validity of these inferences, the following question is relevant
(Table 20.9):

• Measurement influence. Will measurement influence the OoSs?

To find out if a treatment makes a difference to a measured variable, any influence
of the measurement procedure itself should be avoided or else subtracted from the
data.

To facilitate generalization from the study population by analogic inference,
three questions about measurement are relevant (Table 20.10):

• Construct validity. Are the definitions of constructs to be measured valid? Clarity
of definitions, unambiguous application, and avoidance of mono-operation and
mono-method bias?

• Measurement instrument validity. Do the measurement instruments measure
what you claim that they measure?

• Construct levels. Will the measured range of values be representative of the
population range of values?
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Other researchers may want to repeat this kind of research, so measurement
procedures must be specified in a repeatable way. And some agreements about
ethical use of data must be made, in particular about confidentiality of company
data and privacy of personal data:

� In the study by Briand et al. [1], the software engineering ability of students was tested at the
start of the experiment. This was used in the analysis to check if ability made a difference to the
measured variables in the sample.

Model complexity may also make a difference to outcomes, and so an effort was done to keep
the two models that the students worked on of similar complexity. Model complexity was measured
by counting the number of actors, use cases, classes, associations, and attributes in the system
models. This may not fully operationalize the concept of model complexity, as we will see when we
discuss the measurements later.

The quality of domain models was measured according to six indicators, as described earlier.
These are measured in percentages relative to the correct domain model. The arithmetic average
of the six indicator scores is the overall correctness of the model.

The time to make the domain model was the time in minutes from entering the lab to the
moment of handing in the domain model. Students could spend additional time in the lab because
they also has to make SOCs.

Finally, on exit from a lab, students had to fill in questionnaires about their perception of the
task performed in that lab. This could be used to supplement measurements of model quality and
effort with perceptions of task difficulty.

20.4 Inference Design and Validation

Inference from statistical difference-making experiments is sample based and
contains a statistical inference step. Suppose that the experimental treatments A and
B are modeled as values of a treatment variable X and that the measured variable is
Y . We select a sample of population elements. Treatments A and B are allocated to
elements of the sample, giving two treatment groups. Then the following inferences
are attempted, in the following order:

• Statistical inference: Assuming random sampling and allocation of treatments,
a difference in the average value of Y between the treatment groups is used to
infer a difference in the mean of the study population treated by A and the mean
of the study population treated by B . This step is often done using NHST, but
confidence interval estimation is a better alternative, as explained in Chap. 13.

• Causal inference: Suppose that all possible causes of this difference, other than
the treatment, have been randomized away or are implausible for other reasons.
There is still a small chance that the difference is coincidental, but assuming it is
not, then the only plausible cause of the difference in outcomes is inferred to be
the difference in treatments.

• Architectural inference: Assuming relevant theories, the mechanism(s) by which
the difference between A and B caused a difference in Y is hypothesized.
This mechanism will consist of interactions among components of population
elements.
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Table 20.7 Checklist for descriptive inference design in statistical difference-making experiments,
written from the point of view of the researcher preparing to do the research

10.1 Descriptive inference design

– How are words and images to be interpreted? (Content analysis, conversation
analysis, discourse analysis, analysis software, etc.)

– What descriptive summaries of data are planned? Illustrative data, graphical
summaries, descriptive statistics, etc.

– Validity of description design

* Support for data preparation.

- Will the prepared data represent the same phenomena as the unpre-
pared data?

- If data may be removed, would this be defensible beyond reasonable
doubt?

- Would your scientific opponents produce the same descriptions from
the data?

* Support for data interpretation.

- Will the interpretations that you produce be facts in your conceptual
research framework? Would your scientific peers produce the same
interpretations?

- Will the interpretations that you produce be facts in the conceptual
framework of the subjects? Would subjects accept them as facts?

* Support for descriptive statistics.

- Is the chance model of the variables of interest defined in terms of the
population elements?

* Repeatability : Will the analysis repeatable by others?
* Ethics: No new issues.

• Rational inference: If the objects of study contain people, rational explanations
for their behavior may be sought as well. The causal, architectural, and rational
explanations could all be true and mutually supporting each other.

• Analogic inference: Assuming that the study population is representative of the
theoretical population, the difference and its explanations are generalized to the
theoretical population. Further generalization to other, similar populations may
be attempted too.

Which of these inferences actually lead to defensible conclusions, and whether
their conclusions are mutually inconsistent, consistent, or even mutually supporting
depends on the design of the experiment, the acquired data, and the available
prior theories. Randomized controlled trials can support this kind of reasoning,
but quasi-experiments can too, although one has to be very cautious with causal
inference in quasi-experiments [13]. Here we briefly discuss the checklists of all
these inferences and their validity requirements.

Table 20.7 gives the checklist for descriptive inference design. Descriptive
inference in statistical difference-making experiments starts with data preparation,
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Table 20.8 Checklist for statistical inference design in statistical difference-making experiments,
written from the point of view of the researcher preparing to do the research

10.2 Statistical inference design

– What statistical inferences are you planning to do? What data do they need?
What assumptions do they make?

– Statistical conclusion validity

* Assumptions of confidence interval estimation

- Stable distribution. Does X has a stable distribution, with fixed
parameters?

- Scale. Does X have an interval or ratio scale?
- Sampling. Is sample selection random or does it contain a known

or unknown systematic selection mechanism?
- Sample size. If the z distribution is used: Is the sample sufficiently

large for the normal approximation to be used?
- Normality. If the t distribution is used: Is the distribution of X

normal, or is the sample size larger than 100?

* Treatment allocation. Are the treatments allocated randomly to sample
elements?

* Avoid the following omissions in a report about difference-making experi-
ments:

- Effect size. Seeing a very small difference, but not telling that it is
small.

- Fishing. Seeing no difference most of the time, but not telling this.
- Very high power. Not telling about a reason why you can see a

difference (very large sample size makes very small differences
visible).

- Sample homogeneity. Not telling about another reason why you
can see a difference (groups are selected to be homogeneous, so
that any inter-group difference stands out).

which involves deciding what to do with missing data and with extreme data that
may be outliers, testing normality and transforming to another scale, etc. Second,
qualitative data may have to be interpreted and coded. Finally, descriptive statistics
may be given, for example, of the demography of subjects and of important statistics
such as sample mean, variance, and correlation between variables. The validity
considerations all say in one way or another that no information should be added
in data preparation and that any step that could add information should be reported.

The checklist for statistical inference design is listed in Table 20.8. All statistical
inference techniques make assumptions, and these should be checked in the data.
The only statistical inference techniques discussed in this book are confidence
interval estimation and hypothesis testing, and Table 20.8 only lists the assumptions
of confidence interval estimation.

Statistical conclusion validity is the degree to which statistical conclusions are
supported by the data. This requires not only that the assumptions of the statistical
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Table 20.9 Checklist for abductive inference design in statistical difference-making experiments,
written from the point of view of the researcher preparing to do the research

10.3 Abductive inference design

– What possible explanations can you foresee? What data do you need to give those
explanations? What theoretical framework?

– Internal validity

� Causal inference

- Ambiguous relationship. Ambiguous covariation, ambiguous temporal
ordering, ambiguous spatial connection?

- OoS dynamics. Could there be interaction among OoS’s? Could there
be historical events, maturation, drop-out of OoS’s?

- Sampling influence. Could the selection mechanism influence the
OoS’s? Could there be a regression effect?

- Treatment control. What other factors than the treatment could influ-
ence the OoS’s? The treatment allocation mechanism, the experimen-
tal setup, the experimenters and their expectations, the novelty of the
treatment, compensation by the researcher, rivalry or demoralization
about the allocation?

- Treatment instrument validity. Do the treatment instruments have the
effect on the OoS that you claim they have?

- Measurement influence. Will measurement influence the OoS’s?

� Architectural inference

- Analysis: The analysis of the architecture may not support its con-
clusions with mathematical certainty. Components fully specified?
Interactions fully specified?

- Variation: Do the real-world case components match the architectural
components? Do they have the same capabilities? Are all architectural
components present in the real-world case?

- Abstraction: Does the architectural model used for explanation omit
relevant elements of real-world cases? Are the mechanisms in the
architectural model interfered with by other mechanisms, absent from
the model but present in the realworld case?

� Rational inference

- Goals. An actor may not have the goals assumed by an explanation.
Can you get information about the true goals of actors?

- Motivation. A goal may not motivate an actor as much as assumed by
an explanation. Can you get information about the true motivations of
actors?

inference techniques be satisfied but also that all data must be reported, so that
statistical conclusions can be interpreted in terms of the data.

Table 20.9 lists the checklist for abductive inference. In the ideal case, only
one causal explanation is possible, and of this causality only one architectural
explanation is possible. In the real world of experimentation, there may be more than
one causal explanation, and likewise there may be more than one architectural and
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Table 20.10 Checklist for analogic inference design in statistical difference-making experiments,
written from the point of view of the researcher preparing to do the research

10.4 Analogic inference design

– What is the intended scope of your generalization?
– External validity

* Object of Study similarity.

- Population predicate. Will the OoS satisfy the population predicate? In
which way will it be similar to the population elements? In which way
will it be dissimilar?

- Ambiguity. Will the OoS satisfy other population predicates too? What
could be the target of analogic generalization?

* Representative sampling.

- Sample-based research: will the study population, described by the
sampling frame, be representative of the theoretical population?

- Case-based research: In what way will the selected/constructed sam-
ple of cases be representative of the population?

* Treatment.

- Treatment similarity. Is the specified treatment in the experiment similar
to treatments in the population?

- Compliance. Is the treatment implemented as specified?
- Treatment control. What other factors than the treatment could influ-

ence the OoS’s? Could the implemented treatment be interpreted as
another treatment?

* Measurement.

- Construct validity. Are the definitions of constructs to be measured
valid? Clarity of definitions, unambiguous application, avoidance of
mono-operation and mono-method bias?

- Measurement instrument validity. Do the measurement instruments
measure what you claim that they measure?

- Construct levels. Will the measured range of values be representative
of the population range of values?

more than one rational explanation. This gives us a list of alternative explanations
of the outcome, many of which could be true at the same time. Together they
constitute one or even more than one theory of the experiment. The assessment
of the plausibility of the explanations offered by this theory includes the assessment
of the internal validity of your preferred explanation.

Statistical inference takes you from sample statistics to a statistical model of
the study population. Abductive inference may add a causal and architectural
explanation of this model. Analogic inference can then take you further to the
theoretical population and beyond. Table 20.10 gives the checklist for designing
analogic inference from the study population.
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Table 20.11 Checklist for reporting about research execution

Research execution

11. What has happened?

– What has happened when the OoSs were selected or constructed? Did they
have the architecture that was planned during research design? Unexpected
events for OoSs during the study?

– What has happened during sampling? Did the sample have the size you
planned? Participant flow, dropouts?

– What happened when the treatment(s) were applied? Mistakes, unexpected
events?

– What has happened during measurement? Data sources actually used,
response rates?

20.5 Research Execution

The real world is very diverse, even in the laboratory. No two objects of study
are identical, and artificial objects of study may not be constructed exactly as you
planned to. Relevant events during the execution of the research design must be
recorded and reported. Events are relevant if they can influence the interpretation
of the outcomes. This includes events during acquisition of the objects of study,
sampling, treatment, and measurement. A very informative record used in medical
research [8,12] is the participant flow diagram, which shows the events starting from
setting up a sampling frame until the last follow-up measurement of the study. The
diagram shows sample sizes at each stage and states the reasons of dropout.

Table 20.11 gives the checklist for reporting about execution of a study:

• In the study by Briand et al. [1], four experiments were done with group sizes ranging
from 9 to 26. Two systems of comparable complexity were selected, a Car Part Dealer
(CPD) system and a Video Store (VS) system. System complexity was measured as
specified in measurement design earlier.

After the first experiment, the indicator for effort time in the lab was replaced by the
one mentioned earlier, time to produce the model. This is a more accurate measure
for the effort of domain modeling. Also, the questionnaire filled in by students at the
end of each lab was extended with some questions about time. Finally, for experiment
4, the training in the SSD and SOC techniques was improved.

20.6 Data Analysis

In data analysis, the researcher applies the inferences planned earlier. The data
actually collected may suggest other inferences to be performed too. All of this
must be assessed on validity again, and the resulting validity assessment must be
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Table 20.12 Checklist for reporting about data analysis in statistical difference-making experiments

12. Descriptions

– Data preparations applied? Data transformations, missing values, removal of
outliers? Data management, data availability

– Data interpretations? Coding procedures, interpretation methods?
– Descriptive statistics. Demographics, sample mean, and variance? Graphics,

tables
– Validity of the descriptions. See checklist for the validity of descriptive inference

13. Statistical conclusions

– Statistical inferences from the observations. Confidence interval estimations,
hypothesis tests

– Statistical conclusion validity. See checklist for the validity of statistical inference

14. Explanations

– What explanations (causal, architectural, rational) exist for the observations?
– Internal validity. See checklist for the validity of abductive inference

15. Generalizations

– Would the explanations be valid in similar cases or populations too?
– External validity. See checklist for the validity of analogic inference

16. Answers

– What are the answers to the knowledge questions? Summary of conclusions and
support for and limitations of conclusions

reported. Table 20.12 gives the checklists, and the following sections discuss the
example.

20.6.1 Descriptions

� Briand et al. [1] give descriptive statistics of the participants’ level of understanding of the two
systems, of mean overall correctness in labs 3 and 4, and of the mean time to obtain a domain
model in labs 3 and 4. The descriptive statistics show that on the average, the participants’
understanding of the CPD system is slightly better than that of the VS system. At the same time,
the CPD system is more complex according to the indicators defined earlier. It has almost twice the
number of classes and more attributes and associations. However, the difference in complexity is
still small, because both models are small. Still, these data do suggest that complexity may not be
an objective property of a system but of a system-as-perceived. This is relevant for the construct
validity of the complexity indicators.

The descriptive statistics do not show a remarkable difference in average overall correctness
or in modeling time between the groups who used UP and the groups who used UPC.

Lab exit questionnaires showed that students felt time pressured.



www.manaraa.com

314 20 Statistical Difference-Making Experiments

20.6.2 Statistical Conclusions

� Briand et al. [1] did an independent sample t -test of the null hypothesis that there is no difference
between the UP and UPC groups. This did not produce statistically significant p-values except in
experiment 4. This may have been the result of a smaller variance created by the additional training
given to the participants in experiment 4. Or it may have been a coincidence. Further replication of
experiment 4 should make this clear.

Briand et al. used analysis of variance (ANOVA) to compare the performance of the four groups
identified in Table 20.1 in lab 3 and lab 4. ANOVA tests whether group means are different by
comparing within-group variance to between-group variance. If between-group variance is much
greater than averaged within-group variance, where the average is weighted by group size, then
the groups are considered to have statistically different means. In repeated measures ANOVA, the
average difference between the performance of group members at two points in time is compared.

Using these methods, Briand et al. found an improvement in overall correctness for subjects in
experiment 4 when UPC was used. They report a small effect size of a few percent difference in
correctness.

Briand et al. also found a reduction in domain modeling time when UPC was used, in all
experiments. In addition, students generally performed faster in the second modeling exercise,
regardless the method. Modeling time reduced by roughly half an hour, from about 2 h to about
90 min.

No differences were found between the two systems or for different levels of student ability [1,
p. 165].

20.6.3 Explanations

� The statistical model inferred by Briand et al. [1] says that in the study population (from which the
sample was selected), there is no statistically discernable difference in quality between models
produced by UP and UPC, except when extra training is given in the techniques of UPC, namely,
SSDs and SOCs. A computational explanation of this, mentioned above, is that due to additional
training, variance among the students was smaller. A causal explanation is that the difference
observed in experiment 4 is caused by the difference between UP and UPC, assuming that the
subjects are well trained in the additional techniques. The architectural explanation is that reading
SSDs of a system, as required by UPC but not by UP, improves the student’s understanding of the
system, which improves his or her ability to create a correct domain model.

Checking the threats to validity of abductive inference, we find at least one more explanation,
which is that the students in experiment 4 responded to the extra attention given by the
experimenter to SSDs and SOCs, to experimenter expectation, or to the novelty of the method [1,
p. 166].

All of these explanations can be true at the same time. It seems plausible that at least the
improvement of understanding created by SSDs contributes to the improvement of domain model
quality.

Once the subjects had processed the SSDs, they produced the domain model faster than
those who had to work directly from use case models. The causal explanation of this is that
UPC reduces domain modeling time compared to UP. An architectural explanation of this is that a
number of decisions that must be made when building a domain model had already been made for
the students in the SSDs that they were given.

Faster production of a model the second time, regardless the method, could be the effect of
learning or of fatigue: Perhaps they better knew how to make a model, or perhaps they were tired
and wanted to finish quickly. This agrees with the finding that students felt time pressured [1, p.
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164]. Another possibility is that it is ceiling effect: The deadline was approaching, so the measured
time was smaller anyway [1, p. 165].

Note that the explanations of the findings are causal as well as architectural. Attributing an
improvement in model quality to the difference between UP and UPC is a causal explanation.
Explaining a reduction in modeling time by learning, fatigue, or deadline pressure is an architectural
explanation, as it explains how a phenomenon is produced by capabilities and limitations of
components of the object of study, i.e., by capabilities and limitations of students.

20.6.4 Analogic Generalizations

� Briand et al. [1, p. 159] indicate that their experimental subjects had a strong background
in object-oriented software development and UML-based design. They consider their sample
representative of entry-level professional software engineers with significant familiarity with UML-
based development.

On the other hand, the tasks were performed on systems that were relatively easy to
understand, unlike the systems of high complexity found in industry [1, p. 166]. Considering the
threats to external validity, the object of study (a programmer using a method to perform a task on
a system) does not satisfy the population predicate of real-world objects in this respect. Related to
this, the levels of the construct system complexity do not span the full range that they can have in
practice. The authors speculate that even if the use of SSDs and SPCs makes little difference in
the classroom, they could make a larger difference if they were used for complex systems.

Note that Briand et al. performed a three-step generalization, which can be spelled out as
follows:

– The sample was selected from a sampling frame (a list of students that describes the study
population). Statistical inference generalized from the sample to the study population.

– By architectural similarity, this is generalized further to the theoretical population to students
with a similar level of software engineering knowledge and experience.

– By further architectural similarity, this is generalized to the similar population of entry-level
professional software engineers.

20.6.5 Answers

Data analysis has produced, or perhaps failed to produce, answers to the knowledge
questions. You do the reader of a report a great favor if you briefly summarize the
answers explicitly. This also helps you as a researcher to keep track of the bottom
line of the mass of research results:

� RQ1 Does the use of SSDs and SOCs improve the quality of the domain model?

* In the study population, provided that additional training in SSDs and SOCs was given,
UPC improves the quality of domain models somewhat. This could be caused by a variety
of factors, including small variance, experimenter attention, and the use of SSDs. It seems
plausible that at least the use of SSDs contributes to a small improvement of model quality.

RQ2 Does the use of SSDs and SOCs reduce the effort to design the domain model?
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Table 20.13 Checklist for reporting implications for context

Research context

17. Contribution to knowledge goal(s), refer back to items 1 and 3
18. Contribution to improvement goal(s), refer back to item 2

– If there is no improvement goal, is there a potential contribution to practice?

* Time for domain modeling reduces if SSDs are used. This is probably due to improved
understanding crated by SSDs. Some of the decisions that must be made in domain
modeling have already been made when building SSDs.

20.7 Implications for Context

To close the circle, a research report should return to the motivation for the research.
What do we know now that we did not know before? What further studies are
needed? What can we do now that we could not do before? What needs to be
done before this could be applied in practice? This relates the research results to the
prior knowledge context and to possible practical applications. Table 20.13 gives
the checklist:

� (17) This study provides the first evidence about the effect of using SSDs on domain modeling. To
increase the generalizability of the results, the authors call for replication in the field.
(18) The results do not indicate possible usefulness of SDDs for domain modeling in general. To
find out if SSDs add benefit for complex systems or for complex use cases, more study is needed [1,
p. 166].

Notes

1Page 296, causes and capabilities. Holland [3, p. 946] emphasizes that in order to speak
of causes, all population elements must be potentially exposable to any of the treatments that we
are comparing. So a difference in teaching methods can be a cause of differences in learning,
but a difference in gender cannot be a cause of differences in learning. If population elements
are not potentially exposable to different treatments, we can still do correlational studies but not
causal studies. My view is that in a sense all statistical inference is correlational. Causal and
architectural reasoning is part of abductive inference, not of statistical inference. If we observe
a statistically discernable difference among groups of OoSs that all received the same treatment,
then it is reasonable to try to explain this difference by differences in the capabilities of the OoSs.

2Page 296, checklists for difference-making experiments. Pfleeger [9] and Kitchenham et
al. [6] have given guidelines for statistical difference-making experiments in software engineering.
Jedlitschka and Pfahl [4] integrated some of the existing checklists in 2005. There is also an
important checklist for randomized controlled trials in medical research [8, 12]. I compared all
of these checklists and then defined a unification [16, 17]. Empirical evaluation of the result led to
a drastic simplification [15]. The checklist in this book is an expansion of the simplified one with
more detailed items for inference and validity.
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Appendix A
Checklist for the Design Cycle

This checklist can be used to decide what to include in a technical research report
(internal report, published paper, or thesis), as well as to read a research report
written by others. In artifact-oriented research, treatment design and validation will
receive more attention. In evaluation- and problem-oriented research, the questions
under implementation evaluation and problem investigation will receive more
attention. Exclamation marks indicate things to do.

Implementation Evaluation/Problem investigation

• Who are the stakeholders?
• How (in)different is this project to them? Why? (Reasons)
• What are the stakeholder goals? Why? (Reasons)
• What conceptual problem frameworks are in use? (Concepts, variables, components, architectures)
• What conceptual problem framework will I use?
• If an implementation is evaluated, what is the artifact and what is its context?
• What are the phenomena? Why do they happen? (Causes, mechanisms, reasons)
• What are their effects if nothing would be done about them? Do they contribute or detract from

goals?

Treatment Design

• Specify requirements and context assumptions!
• (Requirements � context assumptions) contribute to stakeholder goal?
• Available treatments?
• Design new ones!

Treatment Validation

• (Artifact � context) produce effects? Why? (Mechanisms)
• Effects satisfy requirements?
• (Alternative artifact � context) produce effects? Why? (Mechanisms)
• (Artifact � alternative context) produce effects? Why? (Mechanisms)

© Springer-Verlag Berlin Heidelberg 2014
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Appendix B
Checklist for the Empirical Cycle

This checklist can be used to design your research, write a report about it (internal
report, published paper, or thesis), and read a research report written by others. The
questions are precisely that: questions. They are not instructions to do something.
It is up to you to decide how to design and execute your research, how to write a
report, and how to read one. Related to this, the checklist is not a table of contents
for a report. But you can use it to get inspiration for a report.

The first ten items can be used to design your research and is also useful when
considering what to include in a report. They are stated from a design point of view,
in the future tense. The remaining part of the list can be used for reporting and not
for designing. The items are written in the past tense.

Research Context

1. Knowledge goal(s)

– What do you want to know? Is this part of an implementation evaluation, a problem investigation,
a survey of existing treatments, or a new technology validation?

2. Improvement goal(s)?

– If there is a higher-level engineering cycle, what is the goal of that cycle?
– If this is a curiosity-driven project, are there credible application scenarios for the project results?

3. Current knowledge

– State of the knowledge in published scientific, technical, and professional literature?
– Available expert knowledge?
– Why is your research needed? Do you want to add anything, e.g., confirm or falsify something?
– Theoretical framework that you will use?

Research Problem

4. Conceptual framework

– Conceptual structures? Architectural structures, statistical structures?
– Chance models of random variables: Semantics of variables?

© Springer-Verlag Berlin Heidelberg 2014
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– Validity of the conceptual framework? Clarity of definitions, unambiguous application, avoidance
of mono-operation and mono-method bias?

5. Knowledge questions

– Open (exploratory) or closed (hypothesis-testing) questions?
– Effect, satisfaction, trade-off, or sensitivity questions?
– Descriptive or explanatory questions?

6. Population

– Population predicate? What is the architecture of the elements of the population? In which ways
are all population elements similar to each other and dissimilar to other elements?

– Chance models of random variables: Assumptions about distributions of variables?

Research Design and Validation

7. Object(s) of study

7.1 Acquisition of objects of study

* If OoSs are selected, how do you know that a selected entity is a population element?
* If OoSs are constructed, how do you construct a population element?
* Validity of OoS

- Inference support. Which inferences would be valid with respect to this design? See
checklists for validity of descriptive statistics and abductive and analogic inferences.

- Repeatability. Could other researchers use your report to construct or select a similar
OoS?

- Ethics. Are people informed that they will be studied, and do they consent to this? Are
they free to stop at any time without giving reasons, and do they know this?

7.2 Construction of a sample

* Case-based research: What is the analytical induction strategy? Confirming cases, discon-
firming cases, extreme cases?

* Sample-based research: What is the sampling frame and probability sampling strategy?
Random with or without replacement, stratified, cluster? What should the size of the sample
be?

* Validity of sampling procedure

- Inference support. Which inferences would be valid with respect to this design? See
the applicable parts of the checklists for validity of statistical, abductive, and analogic
inferences.

- Repeatability. Can the sampling procedure be replicated by other researchers?
- Ethics. No new issues.

8. Treatment design

– Which treatment(s) will be applied?
– Which treatment instruments will be used? Instruction sheets, videos, lessons, software,

computers, actuators, rooms, etc.
– How are treatments allocated to OoSs?

* In sample-based research: Blocking, factorial designs, crossover designs? Between-subjects
or within-subject designs?

* In case-based research: Are treatments scaled up in successive cases?

– What is the treatment schedule?
– Validity of treatment design:
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* Inference support. Which inferences would be valid with respect to this design? See the
applicable parts of the checklists for validity of statistical, abductive, and analogic inferences.

* Repeatability. Is the specification of the treatment and the allocation to OoSs clear enough
so that others could repeat it?

* Ethics. Is no harm done, and is everyone treated fairly? Will they be informed about the
treatment before or after the study?

9. Measurement design

– Variables and constructs to be measured? Scales, chance models.
– Data sources? People (e.g., software engineers, maintainers, users, project managers, politically

responsible persons, etc.), primary data (e.g., source code, log files, bug tracking data, version
management data, email logs), primary documents (e.g., project reports, meeting minutes,
organization charts, mission statements), etc.

– Measurement instruments? Interview protocols, questionnaires, video recorders, sound
recorders, clocks, sensors, database queries, log analyzers, etc.

– What is the measurement schedule? Pretests, posttests? Cross-sectional or longitudinal?
– How will measured data be stored and managed? Provenance, availability to other researchers?
– Validity of measurement specification:

* Inference support. Which inferences would be valid with respect to this design? See the
applicable parts of the checklists for validity of abductive and analogic inferences.

* Repeatability. Is the measurement specification clear enough so that others could repeat it?
* Ethics. Which company data must be kept confidential? How is privacy of persons respected?

Inference Design and Validation

10. Inference design

10.1 Descriptive inference design

* How are words and images to be interpreted? (Content analysis, conversation analysis,
discourse analysis, analysis software, etc.)

* What descriptive summaries of data are planned? Illustrative data, graphical summaries,
descriptive statistics, etc.

* Validity of description design

� Support for data preparation

- Will the prepared data represent the same phenomena as the unprepared data?
- If data may be removed, would this be defensible beyond reasonable doubt?
- Would your scientific opponents produce the same descriptions from the data?

� Support for data interpretation

- Will the interpretations that you produce be facts in your conceptual research
framework? Would your scientific peers produce the same interpretations?

- Will the interpretations that you produce be facts in the conceptual framework of the
subjects? Would subjects accept them as facts?

� Support for descriptive statistics

- Is the chance model of the variables of interest defined in terms of the population
elements?

� Repeatability : Will the analysis repeatable by others?
� Ethics: No new issues.
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10.2 Statistical inference design

* What statistical inferences are you planning to do? What data do they need? What
assumptions do they make?

* Statistical conclusion validity

� Assumptions of confidence interval estimation

- Stable distribution. Does X have a stable distribution, with fixed parameters?
- Scale. Does X have an interval or ratio scale?
- Sampling. Is sample selection random or does it contain a known or unknown

systematic selection mechanism?
- Sample size. If the z distribution is used, is the sample sufficiently large for the normal

approximation to be used?
- Normality. If the t -distribution is used, is the distribution of X normal, or is the sample

size larger than 100?

� Treatment allocation. Are the treatments allocated randomly to sample elements?
� Avoid the following omissions in a report about difference-making experiments:

- Effect size. Seeing a very small difference, but not telling that it is small
- Fishing. Seeing no difference most of the time, but not telling this
- Very high power. Not telling about a reason why you can see a difference (very large

sample size makes very small differences visible)
- Sample homogeneity. Not telling about another reason why you can see a difference

(groups are selected to be homogeneous, so that any intergroup difference stands
out)

10.3 Abductive inference design

* What possible explanations can you foresee? What data do you need to give those
explanations? What theoretical framework?

* Internal validity

� Causal inference

- Ambiguous relationship. Ambiguous covariation, ambiguous temporal ordering,
ambiguous spatial connection?

- OoS dynamics. Could there be interaction among OoSs? Could there be historical
events, maturation, and dropout of OoSs?

- Sampling influence. Could the selection mechanism influence the OoSs? Could
there be a regression effect?

- Treatment control. What other factors than the treatment could influence the OoSs?
The treatment allocation mechanism, the experimental setup, the experimenters and
their expectations, the novelty of the treatment, compensation by the researcher, and
rivalry or demoralization about the allocation?

- Treatment instrument validity. Do the treatment instruments have the effect on the
OoS that you claim they have?

- Measurement influence. Will measurement influence the OoSs?

� Architectural inference

- Analysis. The analysis of the architecture may not support its conclusions with
mathematical certainty. Components fully specified? Interactions fully specified?

- Variation. Do the real-world case components match the architectural components?
Do they have the same capabilities? Are all architectural components present in the
real-world case?
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- Abstraction. Does the architectural model used for explanation omit relevant ele-
ments of real-world cases? Are the mechanisms in the architectural model interfered
with by other mechanisms, absent from the model but present in the real-world case?

� Rational inference:

- Goals. An actor may not have the goals assumed by an explanation. Can you get
information about the true goals of actors?

- Motivation. A goal may not motivate an actor as much as assumed by an explanation.
Can you get information about the true motivations of actors?

10.4 Analogic inference design

* What is the intended scope of your generalization?
* External validity

� Object of study similarity

- Population predicate. Will the OoS satisfy the population predicate? In which way
will it be similar to the population elements? In which way will it be dissimilar?

- Ambiguity. Will the OoS satisfy other population predicates too? What could be the
target of analogic generalization?

� Representative sampling

- Sample-based research. Will the study population, described by the sampling frame,
be representative of the theoretical population?

- Case-based research. In what way will the selected/constructed sample of cases be
representative of the population?

� Treatment

- Treatment similarity. Is the specified treatment in the experiment similar to treatments
in the population?

- Compliance. Is the treatment implemented as specified?
- Treatment control. What other factors than the treatment could influence the OoSs?

Could the implemented treatment be interpreted as another treatment?

� Measurement

- Construct validity. Are the definitions of constructs to be measured valid? Clarity of
definitions, unambiguous application, and avoidance of mono-operation and mono-
method bias?

- Measurement instrument validity. Do the measurement instruments measure what
you claim that they measure?

- Construct levels. Will the measured range of values be representative of the
population range of values?

At this point, the checklist for research design ends. From this point on, the checklist
describes research execution and analysis. We switch from the future tense to
the past tense because this part of the checklists asks questions about what has
happened, not about what you plan to do.
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Research Execution

11. What has happened?

– What has happened when the OoSs were selected or constructed? Did they have the
architecture that was planned during research design? Unexpected events for OoSs during
the study?

– What has happened during sampling? Did the sample have the size you planned? Participant
flow, dropouts?

– What has happened when the treatment(s) were applied? Mistakes, unexpected events?
– What has happened during measurement? Data sources actually used, response rates?

Data Analysis

12. Descriptions

– Data preparations applied? Data transformations, missing values, removal of outliers? Data
management, data availability.

– Data interpretations? Coding procedures, interpretation methods?
– Descriptive statistics. Demographics, sample mean and variance? Graphics, tables.
– Validity of the descriptions: See checklist for the validity of descriptive inference.

13. Statistical conclusions

– Statistical inferences from the observations. Confidence interval estimations, hypothesis tests.
– Statistical conclusion validity: See checklist for the validity of statistical inference.

14. Explanations

– What explanations (causal, architectural, rational) exist for the observations?
– Internal validity: See checklist for the validity of abductive inference.

15. Generalizations

– Would the explanations be valid in similar cases or populations too?
– External validity: See checklist for the validity of analogic inference

16. Answers

– What are the answers to the research questions? Summary of conclusions, support for, and
limitations of conclusions.

Research Context

17. Contribution to knowledge goal(s). Refer back to items 1 and 3.
18. Contribution to improvement goal(s)? Refer back to item 2.

– If there is no improvement goal, is there a potential contribution to practice?
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Abductive inference, 116, 177
Acceptance criterion, 55
Acceptance region, 159
Action research, 269

action design research, 292
Agile development, 32
Alternative hypothesis, 160
Ambient correlational noise, 156, 165
Ampliative inference, 116
Analogic inference, 116, 201
Analogic model, 61

target, 61
Analytical generalization, 238, 285
Analytical induction, 95, 103, 115, 123, 203,

209, 233, 238
not done in TAR, 276
vs. replication, 228, 232

Analytical knowledge question, 17
Architectural explanation, 98, 189, 219

vs. interpretative understanding, 84
Architectural inference, 189

in observational case studies, 231
in single-case mechanism experiments, 252
in statistical difference-making

experiments, 300
in TAR studies, 275

Architectural similarity, 203, 265
Architecture, 76
ARE problem, 15

conceptual framework, 84
explanations, 99
objects of study, 121
research questions, 43
theory, 44

Artifact, 29

Artifact design goal, 14
Assumption

context assumption, 52
normality assumption, 151
of architectural inference, 189, 195
of chance model, 81
of comparative-cases causal experiment,

183
of single-case causal experiment, 182
of statistical inference, 170
stable unit treatment value assumption, 198

Attrition threat to validity, 187

Bias, 126, 184, 302

Canonical action research, 292
Capability, 76, 99, 101, 104, 190–192, 195

and limitation, 76
unobservable, 189

Case-based inference, 66, 117
Case-based research, 75, 78, 114, 219

sampling, 95, 123
unclear population predicate, 80

Case study, vi, 46, 191, 217, 225
diary, 225, 239
protocol, 225, 236

Causal explanation, 18, 98, 179, 219
Causal inference, 179

from single-case mechanism experiments,
252

from statistical difference-making
experiments, 307, 310, 314

fundamental problem of, 179
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not from case studies, 230, 235
not from TAR studies, 275, 279
validity, 187

Causality. See Difference-making view of
causality

as difference-making, 163
Central-limit theorem (CLT), 148
Chance model, 80, 123, 130, 139, 144, 297

in observational case studies, 229
in single-case mechanism experiments, 252
in statistical difference-making

experiments, 299
in TAR, 274

Closed question, 20
CLT. See Central-limit theorem (CLT)
Comparative-cases causal experiment, 183,

252
Component, 76
Composite hypothesis, 161
Conceptual analysis of symbolic data, 137
Conceptual framework, 73

conceptual artifact framework, 62
conceptual problem framework, 44, 86
shared with the domain, 84
validity, 87

Conclusion validity, 116
Conditions of practice, 9, 44, 63, 66, 254
Confidence interval, 167
Confounding variable, 127
Constraint, 54
Construct, 73
Construct confounding, 89
Construct level confounding, 207
Construct validity, 55, 87, 188, 298, 313
Content analysis, 137
Context assumption, 52
Contribution argument, 52, 196
Covariation and causality, 180
Credibility, 140
Crossover design, 188, 305
Cross-sectional covariation, 181
Curiosity-driven research, 13, 111

Data location compliance (DLC) problem, 3
architecture, 77
artifact requirements, 51
conceptual framework, 84
context, 8
contribution argument, 53
design cycle, 28
knowledge questions, 22
purpose of treatment, 29
stakeholder goals, 38

stakeholders, 36
theory, 44
validation models, 62

Data preparation, 135
Deductive inference, 116
Dependent variable, 127
Descriptive inference, 116, 135
Descriptive knowledge question, 18
Descriptive statistics, 139
Descriptive validity, 116

as credibility, 140
Design, 29

cycle, 30, 215
problem, 4, 15
science, 3
theory, 31, 44, 62, 103

Design goal, 14
instrument goal, 14

Desire, 38
Difference-making view of causality, 98, 163,

179, 235, 316
Direction of arrival (DOA) problem, 3

artifact requirements, 52
context, 7
contribution argument, 53
design problem, 16
design theory, 63
implementation, 30
knowledge questions, 22
object of study, 121
predictive use of the theory, 100
purpose of treatment, 29
research goals, 15
stakeholder goals, 38
stakeholders, 36
theory, 44
validation models, 62

Distribution. See Probability distribution
DLC problem. See Data location compliance

(DLC) problem
DOA problem. See Direction of arrival (DOA)

problem
Drop-out threat to validity, 187

EA problem. See Enterprise architecture (EA)
problem

Effect generalization, 96
Effect question, 21, 60
Effect size, 163, 164, 171
Empirical cycle, 111, 215

is not a research process, 118
Empirical regularity, 265
Engineering cycle, 27
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is not an engineering process, 31
Enterprise architecture (EA) problem

conceptual framework, 84
design theory, 62
explanations, 99
usability and usefulness of design theory,

101
validation models, 61

Evaluation, 31
Evaluation question, 42
Evolutionary design, 266
Experiment

comparative-cases causal experiment, 183
log, 247, 296
protocol, 247, 296
single-case causal experiment, 182
single-case mechanism experiment, 46, 64,

217, 247
statistical difference-making experiment,

47, 65, 163, 217, 295
Experimental setup threat to validity, 188
Experimental treatment, 126

vs. problem treatment, 126
Experimenter compensation threat to validity,

188
Experimenter expectation threat to validity,

188
Expert opinion, 63, 217
Explanation, 97

architectural, 98, 189
causal, 98, 179
rational, 98, 196
statistical, 154, 177

Explanatory knowledge question, 18
Exploratory knowledge question, 20, 227
External validity, 116, 205, 209

vs. internal validity, 257
in observational case studies, 239
in single-case mechanism experiments, 262
in statistical difference-making

experiments, 311
in TAR studies, 287

External validity threats, 207, 209
Extraneous variable, 127
Extreme-case reasoning, 208, 234

Fact, 135
Fallibility, v, 5

of abductive inference, 197
of ampliative inferences, 116
of architectural inference, 194
of causal inference, 179, 187
of contribution argument, 53

of explanations, 97
of scientific theories, 62, 94
of statistical inference, 144
and validity, 88

Falsification, 158
Falsificationism, 103
Feature-based similarity, 202, 210, 265
Framing a problem, 86
Function, 54
Functional requirement, 54

Generalization, 94
analytical, 238, 285
from case studies, 238
effect generalization, 96
existential generalization, 9
from mechanism experiments, 259
middle-range, 10
requirements satisfaction generalization, 96
universal generalization, 8

Goal, 38
Goal Question Metric, 131
Grounded theory, 137

History threat to validity, 187
Hypothesis, 20
Hypothesis-testing question, 227

Idealization, 8, 44, 45, 67
and scaling up, 66

Ignorability, 198
Implementation, 29
Improvement problem, 4
Inadequate definition, 88
Independent variable, 126
Indicator, 55, 89
Induction

analytical (see Analytical induction)
statistical (see Statistical inference)

Inductive behavior, 162
Inductive inference, 162
Instrument design goal, 14
Internal validity, 116, 197, 198

in observational case studies, 238
vs. external validity, 257
in single-case mechanism experiments, 261
in statistical difference-making

experiments, 310
in TAR studies, 286
threats, 198

Interpretative description, 137
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Interpretative understanding, 85
opposed to architectural explanation, 84
used in architectural explanation, 192

Interrupted time-series design, 185
Interval scale, 130

Journalistic question, 18

Knowledge goal, 14
Knowledge question, 5

analytical, 17
closed, 20
empirical, 17

descriptive, 18
explanatory, 18

open, 20

Left-tailed p-value, 154
Limitation. See Capability
Longitudinal covariation, 181

MARP problem
conceptual framework, 86
design cycle, 28
design problem, 16
explanations, 189
outlier removal, 136
purpose of treatment, 29
usability and usefulness of design theory,

101
validation by single-case mechanism

experiment, 64
Maturation threat to validity, 187
Mean

of probability distribution, 146
of sample, 139

Measured variable, 127
Measurement, 129
Mechanism, 18, 66, 76, 98, 102, 189

and action by contact, 181
Mechanism experiment. See Single-case

mechanism experiment
Mechanistic explanation, 104
Member checking, 138
Method is mechanism, 64, 99, 289
Metric, 55
Middle-range generalization, 10, 100
Middle-range sciences, 9
Model, 61, 121
Model target, 121

Mono-method bias, 89, 227, 298
Mono-operation bias, 89, 227, 298
Mortality threat to validity, 187

NHST. See Null hypothesis significance testing
Nominal scale, 129
Non-equivalent group design, 185
Non-functional property, 54
Non-functional requirement, 54
Norm, 55
Novelty threat to validity, 188
Null hypothesis

of decision, 160
of Fisher significance test, 152
significance testing, 163

Object of study, 79, 114, 121
in case studies, 230
in mechanism experiment, 251
in statistical experiments, 299
in TAR studies, 274

Observational case study. See Case study
OoS. See Object of study
Open question, 20
Operationalization, 55, 297

construct validity, 89
Ordinal scale, 129
Outlier, 135, 155

Participant flow diagram, 312
Peer debriefing, 138
Pilot study, 244
Population, 79

and scope, 95
in case studies, 228
in mechanism experiments, 249
in statistical experiments, 297
in TAR studies, 272
study population, 95, 124, 206, 298
theoretical population, 95, 124, 206, 298

Population predicate, 79
unclear, 80, 228

Posterior knowledge, 8, 93
Power of a statistical test, 160
Prediction problem, 19
Prior knowledge, 8, 93
Probability density, 147
Probability distribution, 74, 80, 81, 145

mean, 146
standard deviation, 146
variance, 146
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Problem frame, 86
Problem treatment, 28

vs. experimental treatment, 126
Proposition in a case study, 227
Provenance, 131, 235, 283
p-value, 154

Quality property, 54
Quasi-experiment, 128, 184

Random sample, 124
Random variable, 80
Randomized Controlled Trial, 128, 183
Ratio scale, 130
Rational explanation, 98, 196

in observational case studies, 232
in single-case mechanism experiments, 253
in statistical experiments, 308
in TAR studies, 275

RCT. See Randomized Controlled Trial
Reasons, 18

vs. causes, 98
Reference theory, 104
Reframing

artifact, 90
scientific theory, 103

Regression discontinuity design, 185
Regression effect, 188, 302
Regulative cycle, 33
Rejection region, 159
Repeated measures design, 305
Replication, 126, 127, 301

and analytical induction, 203, 228, 232
and Fisher significance tests, 154, 156
and single-case mechanism experiments,

254, 257, 265
Requirements satisfaction generalization, 96
Requirements satisfaction question, 21, 60
Research goal, 13–15
Research question

analytical knowledge question, 17
design problem, 15
empirical knowledge question, 17
prediction problem, 19

Right-tailed p-value, 154
Rule of full disclosure, 119
Rule of posterior knowledge, 118
Rule of prior ignorance, 118

Sample, 79, 139
mean, 139

standard deviation, 139
variance, 139

Sample-based inference, 67, 117
Sample-based research, 75, 82, 114, 219

crisp population predicate, 80
sampling, 95, 124

Sampling, 95
distribution, 146
error, 126
frame, 80, 95, 124, 298, 301
mean, 146
random, 124
simple random, 124
theoretical, 244
variance, 146

Scale, 129
Scaling up, 10, 32, 66

by TAR, 269
Scenario, 255
Scientific theory, 93
Scope of a theory, 94
Selection effect, 188
Selection threat, 188
Sensitivity analysis, 253, 260
Sensitivity question, 21, 60
Significance-testing inference rule, 158
Similarity

between model and target, 61
expressed in population predicate, 79

Simple random sample, 124, 301
Single-case causal experiment, 182, 252
Single-case mechanism experiment, vii, 46, 64,

191, 217, 247
Snake oil, 10
Specification, 29
SPI problem

research goals, 43
research question, 43
theory, 44

Stable unit treatment value assumption, 198
Stakeholder, 35

desire, 38
goal, 38

Standard deviation
of probability distribution, 146
of sample, 139

Standardized random variable, 149
Statistical conclusion validity, 170
Statistical difference-making experiment, vii,

47, 65, 163, 217, 295
Statistical explanation, 154, 177
Statistical hypothesis, 297
Statistical inference, 79, 115, 116, 143
Statistical model, 144, 177



www.manaraa.com

332 Index

Statistical significance, 154
Statistics, 139
Study population, 95, 124, 206, 298
Subject rivalry threat to validity, 188
Survey, 45, 217
SUTVA. See Stable unit treatment value

assumption
Systems engineering, 32

TAR. See Technical action research
Target, 61
Technical action research, vii, 65, 191, 217,

269
log, 270, 288
protocol, 270

Technical research goal, 14
Technical research problem, 17
Testing effect, 189
Theoretical framework, 93, 179
Theoretical population, 95, 124, 206, 298
Theoretical sampling, 244
Theory, 43, 93

design theory, 44
of experiment, 186, 187, 311
fallibility, 62
of similitude, 208, 234, 254

Trade-off analysis, 253, 260
Trade-off question, 21, 60
Treatment

of artifact by problem, 28, 256, 278
effect, 125
experimental treatment, 126
group, 307
level of a variable, 127

Triangulation, 138
t -statistic, 150
Two-tailed p-value, 154
Type I error, 159

Type II error, 159

Unit interaction threat to validity, 187
Utility-driven research, 13, 111
UTOS, 209

Validation, 31
before and after implementation, 60
model, 61, 121, 207

Validation research knowledge questions
in mechanism experiments, 249
in TAR studies, 272

Validation research method, 63–66
mechanism experiment, 248
statistical experiment, 296
TAR, 269

Validation research questions, 21, 59
Validity

and fallibility, 88
as degree of support, 116, 120
of inferences, 112, 252
of treatment designs, 59, 252

Variable, 74
confounding, 127
dependent, 127
extraneous, 127
independent, 126
measured, 127

Variance
of probability distribution, 146
of sample, 139

Waterfall development process, 32

z-statistic, 150
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